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Applications of seasonal forecasting in agriculture and 
winter tourism sector 
(Andrea Vajda, Otto Hyvärinen, Tiina Ervasti) 

 

1. Background and motivation 
Seasonal climate forecast products are needed for decision making in various sectors, especially 
in those sectors that are widely affected by climate variability and change, such as agriculture 
and winter tourism. Due to variability in climate, inter-annual variability of crop yields has 
increased notably. For example, Finland experienced extreme cold summer in 2017 followed by 
an extreme hot and dry summer in 2018, both resulting in a decrease by over 25% in crop yield, 
registering in 2018 the smallest harvest from the last 26 years. Similarly, the ski industry is also 
facing an increased vulnerability to climate change and variability. The increased uncertainty of 
snow conditions during the ski season, especially in southern and central regions of Finland; the 
late start/early end of snowing season and the difficulties in artificial snow production due to 
high winter temperatures have significant effects on the winter tourism. Seasonal climate 
forecasts have a large potential to increase preparedness to variability, to manage the business 
risk and optimize resources. Nevertheless, the uptake of seasonal forecasts for decision making 
in Europe has been relatively limited (Bruno Soares and Dessai, 2016). This is partly due to the 
limited skill of forecast systems in this region (Doblas-Reyes et al., 2013; Bruno Soares, 2017) 
and because users are not aware of the availability of such forecasts. Recent advances in seasonal 
forecasts resulted in useful predictions that can be beneficial for stakeholders. The applicability 
of seasonal forecast outputs in agriculture and ski industry has not yet been studied in Finland.  

In this project we aimed to assess the applicability of seasonal forecast outputs for the above-
mentioned sectoral application in Finland and to develop and pilot a set of seasonal climate 
indices both with farmers and ski resort managers. The indices developed for agriculture were 
tested with farmers during two pilot seasons: May-October 2019 and April-October 2020 (still 
on-going), ski resorts managers tested the seasonal climate indices developed during November 
2019-April 2020. 

 

2. Data and methods 

2.1 Engaging the users in the seasonal climate service development 

One of the core requirements of climate services development is the interaction between 
providers and users (Buontempo et al. 2014) that implies users’ involvement in the co-design and 
co-development of services. The seasonal forecast products for agriculture and ski resorts was 
developed in interaction with stakeholders from both sectors through a range of activities, such 
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as meetings during the design and development process, interaction through mails during the 
testing phase and feedback surveys during the evaluation. 

In case of stakeholders from agriculture we have applied a mediate approach, being in direct 
contact with the Central Union of Agricultural Producers and Forest Owners (MTK) from 
Finland from the beginning of the process. The Union was engaged through dialogue in the 
design and development process of the tailored seasonal climate indices in order to harmonize 
the needs of the farmers in terms of content, visualization and delivery form of forecasts. 
Furthermore, the Union has involved over 200 farmers into the two pilot stages from various 
parts of Finland, predominantly from the southern, western and south-western part of the 
country. The indices were selected together with the Union and the developed seasonal climate 
outlooks were delivered to the farmers by mail through the Union for testing. To learn about 
farmers’ opinion about the level of usability of the developed seasonal forecast indices and 
climate outlooks feedback surveys were conducted with them at the end of pilot season 2019 and 
will be done also at the end of season 2020. 

In the case of ski industry pilot, we’ve been in direct interaction with the managers of ski resorts. 
We aimed to engage users from various parts of Finland as ski resorts located in Lapland 
experience different challenges in terms of climate variability than those from the southern or 
central part of Finland. Six representative ski resorts were identified by the Finnish Ski 
Association and involved in the pilot: Ruka-Pyhä, Saariselkä and Salla located in Lapland, 
Hakarinteet and Sappee from Central Finland and Swinghill-Espoo from southern Finland. A 
workshop was organized with the representatives of the ski resorts in the beginning of the pilot, 
where the most useful indices were selected, uncertainties related to variables used in the 
development of indices were presented to the users and the visualization and delivery of climate 
outlooks was agreed. The selected indices were designed in collaboration with the stakeholders 
using as input the aspects and criteria applied in the maintenance practices, for ex. conditions for 
the production of artificial snow or hazard of severe wind speed. The developed seasonal climate 
outlooks were tested during winter 2019-2020; following the test period a feedback survey was 
conducted with the users. 
 

2.2 Datasets  
 
The forecast data used in the development of seasonal forecast indices were provided by the 
SEAS5 seasonal forecast system of ECMWF (Johnson et al. 2019). The variables used were the 
2 m temperature, total precipitation, dew temperature, snow depth, snow density and 10 m wind 
speed. In the first phase of the development and during the pilot from summer 2019, the quality 
of 2 m temperature and total precipitation forecast was assessed using re-forecast data for the 
period 1993-2016 accessed from the C3S Copernicus Data Store (CDS), available at 1° spatial 
resolution for 25 ensemble members. The reason for using the rough spatial resolution but easily 
accessible CDS re-forecasts was the technical setbacks faced when downloading the reforecast 
data through the Meteorological Archival and Retrieval System (MARS) (excessively long-
lasting and repeatedly interrupted process) during winter-spring 2019. Starting November 2019, 
the calibration of the parameters, except wind speed, was done using the re-forecast data for the 
period 1981-2016 spatial resolution accessed through MARS, available at 0.25°. The parameters 
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were evaluated and calibrated using as reference data the ERA5 reanalysis (Hersbach, 2020) for 
the same period. The reanalysis data was interpolated to the same resolution as reforecast data.  

In addition, observational gridded (10x10 km2) growing degree days (GDD) values available 
from FMI database from 2003 onward were used both in the computation and verification of 
seasonal GDD indices. Observational wind speed data from three stations located in Lapland, i.e. 
Inari Saariselkä Kaunispää (68° 26', 27° 26'), Pelkosenniemi Pyhätunturi (67° 1', 27° 13') and 
Kuusamo Rukatunturi (66° 9', 29° 9') were used in the calibration and computation of wind 
speed forecasts. 

The real time forecasts of seasonal forecast indices were computed using the 0.25° spatial 
resolution data available for the 51 ensemble members from SEAS5 forecast system, accessed 
through MARS. Forecasts have been produced for three months ahead, meaning three monthly 
forecasts, the start month being called lead month (LM) 0, followed by lead month 1 and 2. 
 

2.3 Methods of skill assessment and bias adjustment  
 
To reduce the substantial systematic biases from raw model outputs and produce useful 
information for sectoral applications, a bias adjustment process was performed for most of the 
variables. The skill assessment and bias adjustment of model data was performed using the open 
source R package climate4R (Iturbide et al. 2019). The input data used in the analysis was 
initially the re-forecasts accessed from the C3S CDS, during autumn all the analyses were 
updated using the re-forecasts from MARS.  The ensemble re-forecasts monthly averages of 
daily mean temperature, dew temperature, snow depth, maximum wind speed and soil moisture, 
and monthly sum of daily precipitation were calculated for each grid point and evaluated. In 
addition, from the seasonal climate indices developed, the skill of growing degree days was also 
assessed. Ensemble re-forecasts daily mean temperature were used in the calculation of GDD for 
skill assessment, bias adjustment was also performed on daily data. Several bias adjustment 
methods were tested for each variable (Table 1), such as variance, scaling, empirical quantile 
mapping (EQM), parametric quantile mapping (PQM) and power transformation of precipitation 
(PT) built in the climate4R package, and the ensemble model output statistics (EMOS). In 
ensemble model output statistics (EMOS) (Gneiting et al 2005), the monthly values of variables 
was modelled using truncated Gaussian distribution, the mean of this distribution was modelled 
using the ensemble mean as a predictor and the variance was modelled using a simple constant. 
For the variance, the ensemble variance of variables as a predictor was also tried, but this turned 
out to be not a statistically significant predictor and did not improve the results. Other predictors 
might be tested in future studies. The implementation of Messner et al. 2016 was used. 

The raw forecast ensemble and the bias adjusted ensemble data for the three lead months was 
evaluated against ERA5 reanalysis data using reliability diagrams (e.g. Weisheimer and Palmer 
2014) of aggregated grid points of Finnish land areas and maps of verification measures, such as 
correlation, continuous ranked probability skill score (CRPSS) and mean error. To avoid 
overfitting we used odd years for fitting and only even years for validation. Verification results 
are shown for those months (February, May, August and November) that have the same 51 
number of reforecast members as the operational forecasts. 
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Table 1. The bias adjustment methods used in the skill assessment of the variables and seasonal 
forecast indices. In case of total precipitation the months the bias adjustment method is applied 
for are listed in brackets, for the other variables the analyses are done for the whole year. 

 

Variables 
and indices 

Raw 
model 
data 

Bias adjustment methods BA 
method 
selected 

Variance Scaling EQM PQM PT EMOS 

2 m 
temperature 

x x   x     x EQM / 
variance 

Total 
precipitatio
n 

x x 

(V-VIII) 

x 

(I-XII) 

x 

(I-XII) 

x 

(V-VIII) 

x 

(I-XII) 

x 

(I-XII) 

No  BA 
applied 

Snow depth x x   x     x EMOS 

Soil 
moisture 

x x   x     x No  BA 
applied 

Wind speed x             Quantile 
mapping 
(obs 
based) 

Growing 
degree days 

x x   x       EQM 

 
 

3. Forecast skill assessment of seasonal forecast variables for 
Finland 
Verification results for mean temperature, total precipitation, soil moisture, snow depth, wind 
and the growing degree days (GDD) index are presented hereinafter. The analyses are based on 
the high resolution re-forecasts data for 1981-2016 accessed from MARS except for the GDD 
index that is based on re-forecasts accessed from C3S CDS and observations from FMI archives 
for the period 2003-2016. 
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3.1 Temperature  

The skill of raw model data and bias corrected data with the EQM, scaling, variance and EMOS 
method was analyzed for 2 m temperature. Reliability diagrams for tercile forecasts indicate that 
all terciles are useable, varying between perfect and marginally useful for lead month 0 for most 
of the months. Lower reliabilities are indicated for May (Fig. 1), for which the forecast are 
useless except the upper tercile. Results for LM1 and 2 diverge: lower and upper terciles are 
marginally useful for August for LM1 and even February and May for LM 2, for the other 
months forecasts are unusable.  

The continuously ranked probability skill score (CRPSS) for bias corrected data with the 
variance method for each grid point is shown in Figure 2. For lead month 0 large skill score 
values that are statistically significant were found over the whole study area for initializations in 
Feb and Nov. For the other initialization times and lead times CRPSS values are lower. In the 
case of LM1, skill scores are lower, somewhat better in February and August but near zero in 
spring. All the bias correction methods tested corrected the raw model biases, improving the raw 
data in 60-80% of the grid points depending on lead time and months. Results for all the methods 
for February using CRPSS are shown in Figure 3. Analyses show that all the methods corrected 
effectively the biases, giving added value to temperature data. Variance method has 
outperformed the other corrections. 

Similar improvement is seen in the variation of mean error (not shown), which was significantly 
reduced by the bias adjustment methods for each lead time and initialization. The forecast model 
systematically underestimated the observed temperature values except for Aug, Sep and Oct, 
when error values were also the lowest. 

Based on the skill assessment results we decided to correct the raw temperature data with the 
variance method starting with autumn 2019. For the first stage of the pilot, i.e. summer 2019 
temperature data was corrected using the EQM method. This choice was justified by the results 
of preliminary skill analyses from spring 2019, based on which EQM method indicated 
reasonable improvements for temperature. It must be noted that in the preliminary skill 
assessments fewer methods were tested, also the spatial resolution and length of reanalysis data 
involved in computation was more reduced. Following the extended skill assessment experience 
and the outputs presented above the choice of bias correction method was reconsidered.  
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Figure 1. Reliability diagrams of tercile mean temperature forecasts for February, May, August 
and November with lead month 1, 2 and 3 for the bias corrected data with the variance methods. 
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Figure 2. Maps of CRPSS for mean temperature forecasts for February, May, August and 
November with lead month 1, 2 and 3 obtained for bias corrected data with the variance method. 
Statistically significant grid points are marked with crosses. 
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Figure 3. Maps of CRPSS for mean temperature forecasts for February for lead month 1, 2 and 
3 shown for raw model data and bias corrected data. 
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3.2 Total precipitation 

Total precipitation results for the months for which the full 51 reforecast members were available 
(February, May, August and November) are shown below. For the comparison between the 
methods, the results for February using CRPSS are shown (Fig. 4). All bias-adjustment methods 
improve on the raw forecasts. The results are statistically significant for the first lead month, but 
after that difference between the climatology is rather small, or negligible. 

The EMOS is arguably the most promising method for further study, as even with the very 
simple implementation (the Gaussian approximation without any covariates), it gives 
competitive results and could be easily expanded with additional information sources. However, 
the results in November were disappointing (CRPSS no better than the climatology in any grid 
point, for reasons to be studied later), and the results for all four months are shown using the 
scaling method (Figs. 5 and 6). 

All in all, the "winter" months (February and November) got higher scores than the "summer" 
months (May and August). Both CRPSS and reliability diagrams agree that after the first lead 
time, the probabilities are, mostly, not really useful or even somewhat misleading. Since 
according to the preliminary verification results from spring 2019 no improvement was seen in 
the quality of bias corrected precipitation data, the raw forecast was used in the production of 
climate indices during the pilot seasons. However, based on the new skill assessment results the 
biases can be effectively reduced with EMOS, this method will be considered in future 
applications. 
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Figure 4. Maps of CRPSS for total precipitation forecasts for February with lead month 1, 2 and 
3. Both not corrected or “raw” forecasts and forecasts bias-corrected with different methods 
(see Table 1) are shown. Statistically significant grid points are marked with small crosses. 
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Figure 5. Maps of CRPSS for mean total precipitation forecasts for February, May, August and 
November with lead month 1, 2 and 3 obtained for bias-corrected data with the scaling method. 
Statistically significant grid points are marked with small crosses. 
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Figure 6. Reliability diagrams of tercile total precipitation forecasts with lead month 1, 2 and 3 for 
February, May and November obtained with the scaling method. 

 

3.3 Soil moisture 

Verification results of soil moisture are shown for those months (February, May, August, and 
November) that have the same 51 number of reforecast members as the operational forecasts. 
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Forecasts were bias-adjusted using the variance method. These results are based on Hyvärinen et 
al. 2020. 

 

 
Figure 7. The maps of CRPSS for soil moisture forecasts in February, May, August, and 
November with lead times of 0, 1, and 2 months. Statistically significant grid points marked with 
points. Forecasts are bias-adjusted using the variance method. From Hyvärinen et al. 2020. 
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Figure 8. The reliability diagrams of tercile forecasts for soil moisture for February, May, 
August, and November for Finnish land areas with lead times of 0, 1, and 2 months. Forecasts 
are bias-adjusted using the variance method. From Hyvärinen et al. 2020. 

 

The CRPSS maps are shown in Figure 7. For the first lead month, there are rather large areas 
with reasonably large skill score values that are statistically significant. For the second lead 
month, values are lower, somewhat better in winter months than in summer months. For third 
lead time, values are very near zero everywhere and statistical significant areas are scarce, so it is 
mostly hard to argue that the forecasts would be better than the reference. 

Reliability diagrams of tercile forecasts for Finnish land areas are shown in Figure 8. All terciles 
of all months for the first lead month forecasts are usable, but results for other lead times 
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diverge. In winter months (November and February), lower and upper terciles are somewhat 
usable even with the lead-2 forecasts, but for summer forecasts these terciles are no longer very 
usable, and can be downright misleading. For all months, the forecasts of middle tercile are 
mostly unusable for longer than the lead-0 forecasts. The probable reason for this is that it is 
difficult to discriminate between no signal and the average conditions. 

 

3.4 Snow depth 

Verification results shows good skill both for raw model snow depths and for snow depths 
corrected using EQM, variance and EMOS methods. Reliability diagrams of snow depth 
forecasts, shown for Feb, May and Nov (Fig. 9), indicates that all the terciles for lead time 0 
varies between useful and marginally useful for all the initializations. In terms of lead month 1 
and 2 forecasts all the terciles are usable for February, varying between perfect and marginally 
useful categories but with varying between marginally useful and useless for May and 
November. This can be related to challenges in forecasting the onset and melting of snow cover 
in the beginning and end of the season. 

For lead month 0, the CRPSS values are large, with values close to 1 and statistically significant 
over most of Finland in February and over large areas in November (Fig. 10). High skill score 
values are indicated also for LM 1 and 2 for Feb, lower values but still showing skill are given 
for the other months. All the bias correction methods reduced the mean error from the row data 
and improved the skill. According to the CRPPS metrics, EMOS reduced the most effectively the 
biases compared to the EQM and variance methods. Thus, the EMOS adjusted snow depth data 
was used in the production of snow related seasonal forecast indices and climate outlooks. 
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Figure 9. Reliability diagrams of tercile snow depth forecasts with lead month 1, 2 and 3 for 
February, May and November obtained for the raw model data and bias corrected data with the 
EQM, variance and EMOS methods. 
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Figure 10. Maps of CRPSS for snow depth forecasts with lead month 1, 2 and 3 for February, 
May and November obtained for the raw model data and bias corrected data with the EQM, 
variance and EMOS methods. Statistically significant grid points are marked with crosses. 

 

5.6 Growing degree days index 

Verification results for the growing degree days (GDD) index calculated from the raw model 
data and post-processed data with EQM and variance method were analyzed. Reliability 
diagrams for tercile forecasts of GDD index indicate that for LM0 the lower and upper terciles 
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fall between marginally useful and perfect category for July-Aug-Sep initialization but for LM1 
and 2 the forecasts are useless both for raw model data and bias adjusted data. In June the 
forecasts are not useful for any lead time (Fig. 11).  

 

 
Figure 11. Reliability diagrams of tercile growing degree days index forecasts with lead month 
1, 2 and 3 for June-September obtained for the bias corrected data with the EQM method. 

Considerably large CRPSS values that are statistically significant were found over large areas for 
LM0 in July and September (Fig. 12) somewhat lower but still statistically significant skill score 
values were in June for LM1. For the other initializations and lead times the skill scores are 
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lower, in some cases near-zero. Both variance and EQM method improved slightly the skill of 
GDD index for each LM and initialization except for August; the improvements shown by the 
two bias correction methods were of the same level (Vajda and Hyvärinen, submitted). Also, 
using the observed GDD as a starting point in the computation of forecasted GDD values 
improved the forecast to some degree. It has been decided to apply the EQM in the bias 
adjustment process during the pilot. 

 

 
Figure 12. Maps of CRPSS for bias corrected growing degree days index (applying the EQM 
method) for June-September with lead months 0, 1 and 2. Statistically significant grid points are 
marked with crosses. 
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6. The seasonal forecast indices developed and pilot phases  

6.1 Seasonal forecast indices developed 

A set of seven seasonal forecast indices were tailored for agriculture and five seasonal forecast 
indices for ski resorts (Table 2). The indices developed for the farmers were: mean temperature, 
development of growing season, growing degree days, cold spell, total precipitation and 
dry/rainy conditions, soil moisture. The development of growing season, cold spell and dry/rainy 
condition indices described the likelihood of expected weather conditions through probability 
forecast, while the mean temperature, growing degree days and total precipitation indices 
through absolute values (Vajda and Hyvärinen, submitted). All the indices were computed for 
three months ahead and updated every month. 

The mean temperature index was calculated for each grid from the bias corrected (using EQM 
method for May-Oct 2019 and variance starting from Nov 2019) monthly ensemble mean values. 
Total precipitation index was calculated in a similar way but using the raw model monthly 
ensemble precipitation sum.  

The growing degree day index provided the forecasted GDD sum accumulated by the end of 
each month. GDD was defined as the degree sum above the base temperature (5 °C) since the 
start of the growing season and was calculated from the bias corrected (using EQM method) 
daily values. The forecasted GDD consists of the observed GDD by the initialization month and 
the additional forecasted sum of temperatures above the base temperature for each ensemble 
member. The development of growing season index indicates the likelihood of growing season 
being behind, normal or ahead of climatology (Fig. 13). The development phase was defined by 
the proportion of forecast members indicating below normal, normal and above normal category 
compared to climatology for the normal period 1981-2010. In addition, probabilities within these 
categories describe the proportion of members falling in the tercile categories (below 33%, 33-
66% and above 66%) of the forecast. For instance, if most of the ensemble members lied within 
the below normal category the growing season was predicted to be behind the climatology and 
the uncertainty is relatively small (Vajda and Hyvärinen, submitted).  

 

Table 2. The seasonal climate indices developed including the variables, thresholds and methods 
used in the calculations. 

Seasonal climate index Variables used in product 
development 

Methodology and thresholds 
applied 

Mean temperature Forecasted t2m Monthly ensemble mean t2m value 

Development of growing 
season 

Forecasted daily mean 
temperature (Tdaily), observed 
GDD, GDD climatology (1981-
2010) 

tref = 5 °C 
GDD= ƩTdaily- tref 
GDDforecast=GDDobs+ ƩTdaily forec - 
Tref 
GDDforecast compared to GDDobs 
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Growing degree days  Forecasted daily mean 
temperature (Tdaily), observed 
GDD 

tref = 5 °C 
GDD= ƩTdaily- tref 
GDDforecast=GDDobs+ ƩTdaily forec - 
Tref 

Cold spell Forecasted daily Tmean, re-
forecasted daily mean 
temperature 

Forecasted 6-day Tmean falls below 
0.1 quantile of re-forecast Tmean 
climatology 

Total precipitation Total precipitation (TP) Forecasted monthly ensemble TP 
value 

Dry/rainy conditions Forecasted total prec, re-
forecasted total prec 

Forecasted monthly ensemble mean 
TP amount compared to the 
monthly 0.5 quantiles of re-
forecasted TP 

Soil moisture Forecasted volumetric soil water 
layer 1 and 2, re-forecasted 
volumetric soil water layer 1 and 
2 

SM= swlv1*0.25+swlv2*0.75 

Forecasted monthly SM of the 
ensemble mean compared  to the 
monthly 0.5 quantiles of re-
forecasted SM 

Probability of snow cover Forecasted monthly mean snow 
depth 

Percentage of forecast ensemble 
members indicating ≥1 cm of 
monthly mean snow depth 

Snow depth Forecasted monthly mean snow 
depth 

Forecasted monthly ensemble mean 
snow depth 

Conditions for artificial 
snow production 

Forecasted daily dew point 
temperature, forecasted daily 
wind speed 

Tdew point < -5 °C 

WS < 5 m/s 

Daily minimum dew point 
temperature combined with daily 
maximum wind speed 

Occurrence of maximum 
wind speed 

 

Forecasted daily wind speed, 
observed daily wind speed 

Forecasted number of days with 
maximum wind speeds between 
given thresholds related to the 
station observations 
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Figure 13. Seasonal climate outlook describing the development of growing season issued on 
June 6, 2020. 

 

 
Figure 14. Seasonal climate outlook describing the probability of cold spell issued on October 6, 
2019. 
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The cold spell index (Klein Tank et al. 2009) was implemented by combining the forecasted 
mean temperature with the reforecast mean temperature for the period 1993-2016. A cold spell is 
considered to occur when the mean temperature of a 6-day period falls below the 0.1 quantile of 
the re-forecast mean temperature climatology. The proportion of ensemble members satisfying 
this criterion gives the probability of occurrence (Fig. 14).  

The dry/rainy conditions index defines the drier than average and rainier than average conditions. 
It was determined by relating the forecasted monthly total precipitation amount of the ensemble 
mean to the monthly 0.5 quantiles of re-forecasted total precipitation for the respective month 
from the 1993-2016 period. Values below 0.5 quantile marked the drier, those above 0.5 quantile 
the rainier than usual conditions (Vajda and Hyvärinen, submitted). 

The soil moisture index described the conditions of soil, i.e. being either drier or wetter than 
usual. First, the soil moisture was calculated from the volumetric soil water layer 1 (soil layer 
from 0 to 7 cm, swlv1) and volumetric soil water layer 2 (soil layer from 7 to 28 cm, swlv2) as 
swlv1*0.25+swlv2*0.75 (Hyvärinen and Vajda, 2020).  The index was computed by relating the 
forecasted monthly soil moisture of the ensemble mean to the monthly 0.5 quantiles of re-
forecasted soil moisture for the respective month from the 1981-2016 period. Values below 0.5 
quantile marked the drier, those above 0.5 quantile the wetter than usual soil conditions (Fig. 15). 

 

 
Figure 15. Seasonal climate outlook describing the development of soil moisture for lead month 
0, 1 and 2 issued on June 6, 2020. 

 
The following indices were developed and tested with the ski resort stakeholders: mean 
temperature (as provided for the farmers), probability of snow cover, snow depth, conditions for 
artificial snow production and occurrence of maximum wind speed. 
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Both the probability of snow cover and snow depth were calculated from the bias corrected 
monthly mean snow depth values. The probability of snow cover was defined as the percentage 
of forecast ensemble members indicating at least 1 cm of monthly mean snow depth. The snow 
depth index describes the monthly mean snow depth for each grid box.  

Conditions for artificial snow production index described the probability of days with favorable 
weather likely to produce snow. The suitable weather conditions for snow production was 
defined together with the end-users, effective snowmaking depends on low air temperature, 
humidity and relatively calm wind conditions. Suitable conditions for artificial snow production 
were considered to occur when the dew point temperature fell below -5 °C and wind speed is 
below 5 m/s. Bias corrected (using variance method) daily minimum dew point temperature and 
raw forecast data for daily maximum wind speed was used in the calculations. The probability of 
days/month fulfilling the above mentioned criteria is given in three categories: less than 10, 10-
20, more than 20 days (Fig. 16). The proportion of ensemble members that satisfied the criterion 
expressed the probability of occurrence for the three categories. 

 

 
Figure 16. Seasonal climate outlook describing the probability of days suitable for artificial 
snow production for lead month 0, 1 and 2 issued on January 6, 2020. 

The occurrence of maximum wind speed index predicts the number of days with maximum wind 
speed exceeding certain thresholds in the given location (Fig. 17). Raw wind speed model data 
was bias corrected using observations for the 1996-2016 period from the nearby weather stations 
located on mountaintop and using the quantile mapping method with gamma distribution. The 
forecasted number of days with certain maximum wind speeds was related to the station 
observations for each location. Uncertainty information is given through the 0.1 and 0.9 quantiles 
(shown with whiskers) and the median of the observed number of days (in dashed lines). 
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Figure 17. Seasonal climate outlook describing the occurrence of maximum wind speed for LM1, 
2 and 3 initialized on January 6, 2020. 

 

6.2 Climate outlooks and pilot phases 

The forecasts of tailored seasonal indices were produced manually on the 5th of every month, 
when updates from ECMWF were released. The indices visualized through monthly maps were 
combined into seasonal climate outlooks and sent to the users. When designing the outlooks we 
aimed for an easily understandable and interpretable format. The outlooks also contained 
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information on the indices, such as a short description of the index, advice on how to interpret 
the forecast and information on the computation of the product. 

Two testing stages were run with the farmers, the first pilot during May-October 2019 followed 
by a second pilot during April–October 2020 (still on-going). The first seasonal climate outlooks 
were issued to the farmers in June 2019 and included four indices: mean temperature, 
development of growing season, growing degree days and total precipitation. The indices 
describing dry conditions and cold spells were additionally added in August. However, all the 
indices were subsequently computed for the time period May-October 2019 for evaluation 
purposes. Following the farmers' wishes regarding new indices from the feedback given at the 
end of the first pilot, the soil moisture index was developed and included to the climate outlook 
starting from April 2020.  

The pilot of seasonal climate outlooks generated for the ski resorts took place during November 
2019-April 2020. The first outlook issued included the mean temperature, probability of snow 
cover, snow depth and conditions for artificial snow production forecasts. The occurrence of 
maximum wind speed index was added in December 2019 and it was developed and issued 
exclusively for the resorts located in Lapland where hazardous gusty winds may impact the 
operation of ski lifts.  

 

7. Evaluation of seasonal forecast products from the first 
pilot phase 

7.1 Performance of seasonal climate outlooks during the pilot 
seasons 

Following the pilot season from summer 2019 and winter 2019/2020, the accuracy of forecasts 
were tested by comparing the climate outlooks provided with observations for temperature, 
growing degree days and precipitation for the summer testing phase, and snow depth and 
maximum wind speed for winter season. Precipitation and GDD forecasts were tested for three 
stations located in various regions: Jokioinen (60°48', 23°29') located in southern part of Finland, 
Seinäjoki (62°56', 22°29') from central Finland and Sodankylä (67°21', 26°37') from Northern 
Finland. An analysis of snow conditions and maximum wind speed outlooks were run for the ski 
resorts involved in the pilot. The performance of the climate outlooks during one pilot phase 
clearly does not assess the skill of the forecasts and developed indices, the intention is rather to 
estimate if the produced forecasts were of any use for the farmers. 

The skill of mean temperature was in general good during the whole pilot (May 2019-Aug 
2020). The forecasts performed better for LM0 (not shown), marking biases of maximum 1-2 °C 
range, especially in the southern and southwestern coastal area, where the mean temperature was 
systematically underestimated both during summer 2019. Similar analogy were found for LM1 
and LM2 forecasts for summer months 2019, except for July, for which mean temperature was 
overestimated by both May and June runs. During the winter season the model forecasted lower 
monthly mean temperature for Nov-Jan, with larger errors (up to 3-4 °C) for longer lead times. 



 

  Work Package 6 / Deliverable 6.3    

30 

This underestimation of winter temperature was more pronounced in Southern and Central 
Finland. Winter was exceptionally warm in Finland. Although the forecast indicated a warmer 
than average winter already in November initialization, the anomaly was predicted to be lower. 
During late winter and early spring 2020 the forecasts overestimate the monthly mean 
temperature. The quality of summer forecast was in general good, although the warm June was 
systematically underestimated. 

 

 
Figure 18. Forecasted and observed GDD during May-September 2019 for the selected 
locations: Jokioinen, Seinäjoki and Sodankylä (from Vajda and Hyvärinen submitted to ASR).  

 
In terms of growing season outlooks, the development of growing season was predicted well 
for LM0 in case of each run, however the LM1 and LM2 forecasts slightly overestimated the 
development of growing season for the whole Finland except for the southern part. The 
accumulation of forecasted and observed growing degree days sum during the pilot season is 
shown in Figure 18 for the three selected locations. The predicted GDD sum is in strong 
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resemblance with the observed accumulation, the skill increasing for shorter lead time. Although 
the LM2 forecast has slightly reduced skill, the observed values fall within the 10 and 90% 
probability distribution of ensemble members. Reliable predictions of growing season 
development and growing degree days sum provide valuable information on crops stages, 
agricultural productivity permitting better management and planning the timing of activities. 

The quality of precipitation forecast was poor. The amount of precipitation was in general 
overestimated during summer 2019 for each lead time (Fig. 19), with the largest errors in the 
extremely dry month of July which was predicted to be rainier than usual. The quality of 
precipitation forecast for the summer season 2019 was lower than that of the reforecast 
climatology for the same months for the selected location. Similar features were seen during the 
summer season, 2020 with overestimation of precipitation during April, May and August. 
Precipitation forecasts for June and July were of better quality, except for more local outlier 
rainfall episodes. 

 

 
Figure 19. The forecasted and observed monthly precipitation sums for summer 2019 and 2020 
and the climatology based on reforecast precipitation values and observations from 1993-2016 
for the selected locations. Observed and forecasted precipitation values are missing for Sep-Oct 
2020. 

As winter 2019/2020 was exceptionally warm in Finland, snow conditions were also exceptional: 
the southern part was snow free (in Helsinki 3 cm of maximum snow depth during the winter, the 
lowest registered from the last 100 year) while exceptionally large snow amounts were registered 
in Lapland (with the largest snow depth registered form the last 100 year in Sodankylä, 127 cm). 
The forecasted and observed snow depth during Nov-Apr for the ski resorts involved in the pilot 
is shown in Figure 20. Observations are obtained from the closest weather station.  
The quality of snow depths forecast was in general good, with best performance for lead month 
0. However, the snow amount was slightly underestimated in the northern located resorts, 
especially towards the end of the season. In case of the ski resorts located in southern Finland the 
snow amount was underestimated, the errors ranging between 3 and 15 cm. 
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Figure 20. The forecasted and observed snow depths for November 2019-April 2020 for the ski 
resorts involved in the pilot. 

For the performance of occurrence of maximum wind speed outlook, the forecasts made in 
February are shown in Figure 21 as an example. The dark red bars show the mean forecasted 
number of days when the wind speed threshold is exceeded with the 80% confidence intervals. 
The black dotted line is the climatology. The red dashed line is the actual number of days based 
on observations. When the observations are not very extreme, the forecasts seem to be 
reasonable. For example, in Saariselkä and Ruka and with the lead month 0, the forecasts suggest 
somewhat higher than normal winds, and observations agree. On the other hand, the rather 
unusually strong winds, as in Pyhä, were not forecasted very well. 

All in all, the mean forecast of the number of days might not work very well, but the 
observations are most of the time inside the confidence intervals, as they should be. Wider 
confidence intervals would have covered more observations. This suggests that a probabilistic 
forecast would be more informative, but would be more complicated and the user might need 
more training before they can gain from such forecasts. Of course, a more extensive validation 
using reforecasts would be needed before we can say if the forecasts are better than climatology. 
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Figure 21. Forecasted and observed occurrence of maximum wind speed for February, March 
and April 2020 initialized in February 2020. 
 
 

7.2 Evaluation by the users 

Following both the pilot from summer 2019 and winter 2019/2020 a feedback survey was 
conducted with the users to gather their opinion about the seasonal climate outlooks and the 
usefulness of the developed indices. A summary of the feedback forms and their results are 
presented below. 

The information asked from the farmers referred to (1) how useful and (2) how understandable 
the climate outlooks were, (3) how the forecasts were used, (4) have the users changed their 
planes based on the forecasts and how, (5) what kind of improvements they wished for and (6) 
what other indices would be useful for farmers. The farmers were also asked about their 
willingness to test the seasonal outlooks during spring-autumn 2020. Background information of 
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the respondents, such as the province they operate in, experience as a farmer and weather and 
climate information they usually use in their work was also asked.  

Of the involved farmers, 43 answered the survey, of which 83% found the climate outlooks very 
easily or easily understandable. All the tested seasonal indices were found useful, the total 
precipitation index was marked as very useful and useful by 78%, and mean temperature and 
development of growing season by 74% of the respondents (Fig. 22). The evaluation regarding 
precipitation is not in line with our verification results for the pilot season. Nevertheless it might 
indicate users’ urge for seasonal precipitation forecast but it also shows that users need more 
information on the skill of forecast to better understand its usability.  

When asking about how the outlooks were used by the farmers, they listed the following 
activities: planning the time of harvest, the threshing, in feed preparation and growth regulation 
of cereals. A few respondents indicated that they were rather following the forecasts than using 
those in everyday work.  29% of repliers have changed their operations based on the seasonal 
outlooks, especially the time of the harvests while 45% haven’t changed their normal course of 
actions although they followed the forecasts. 

Most of the respondents (93%) indicated their willingness to continue the piloting during the 
year 2020. From the listed indices to be included in the pilot 2020, the soil moisture and wind 
speed were the most wished. Respondents also expressed their wishes for the following 
improvements: detail the forecasted conditions in the text description, add the variation of 
forecasted indices during the past years and the 30-year climatology, and include risk analysis 
for various regions. Although it was not possible to fulfil all the requirements within the running 
project, improvements on the included forecast text have been done and the soil moisture has 
been included for the 2020 pilot. Further improvements are considered for the future pilots.  

 

 
Figure 22. Rated values of level of benefit for the tested seasonal climate indices by the farmers 
based on the survey following the summer 2019 pilots. 
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To the feedback survey conducted with the managers of the ski resorts 4 replies were received. 
Users were asked for feedback on the usefulness, easiness of interpretation of the outlooks and 
how the forecasts were used. We also asked about their willingness of being involved in further 
pilots and the need for summer climate outlooks. According to respondents the climate outlooks 
were easily understandable. The most useful indices were considered the mean temperature and 
conditions for artificial snow production, these being used for assuring snow on slopes and 
producing extra amounts of snow. However, only 25% of the respondents (1 user) changed their 
plans based on the provided outlooks, 50% of the respondents couldn't say if they changed their 
activities in any way. It must be noted that half of the respondents run their business in Lapland 
and half in central and southern Finland. The snow conditions during the pilot season were 
exceptional and very different in southern and central Finland compared to Lapland. While an 
exceptionally large amount of snow was registered in Lapland, the winter was mild and thus 
snow free in the rest of the country, thus ski resort managers from various regions encountered 
different issues during the season. All of the respondents were willing to continue the testing of 
seasonal outlooks in the future; they also indicated their need for summer outlooks including 
temperature, precipitation and wind related forecasts. Also, 75% of the users showed an interest 
in sub-seasonal forecasts for the winter season. 

 

8. Summary 
In this project, we have concluded the first tests of applicability of seasonal forecasts for 
agriculture and the ski industry in Finland. Forecasts, a set of seasonal climate indices, were co-
developed with farmers and ski resort managers. The indices developed for agriculture were 
tested during two pilot seasons: May-October 2019 and April-October 2020 (still on-going), 
those developed for ski resorts were tested during November 2019-April 2020. 

Based on the reforecasts and for all variables, the forecasts for winter months were more skillful 
than for the summer months. In winter at least the forecasts of the first month were skillful for 
the whole country, sometimes also for the second month, at least in some parts of the country. 
The probabilities of lower and upper terciles were often more reliable than forecasts of middle 
tercile. The probable reason for this is that it is difficult to discriminate between no signal and the 
average conditions. 

During the pilot season from summer 2019 and winter 2019/2020, the temperature-based 
forecasts fared well, while the precipitation forecasts fared less well. Snow forecasts were also of 
good quality. 

The users were surveyed about the usefulness of the forecasts. Farmers found the climate 
outlooks very easily or easily understandable. All the tested seasonal indices were found useful, 
the total precipitation index, mean temperature and development of growing season being the 
most useful. For the ski resort managers, the most useful indices were the mean temperature and 
conditions for artificial snow production. How the perceived usefulness of forecasts transfers to 
the decisions made by the users is not so straight-forward. For farmers, almost one third of 
repliers have changed their operations based on the seasonal outlooks, especially the time of the 
harvests, while the half of repliers haven’t changed their normal course of actions although they 
followed the forecasts. For the ski resort managers, only one user of the four repliers changed 
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their plans based on the provided outlooks, and half of the respondents couldn't say if they 
changed their activities in any way. 
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Applications of seasonal forecasts for hydropower 
(Alexey Karpechko, Jaakko Ikonen) 

 

1. Snowmelt driven streamflow forecasts and hydropower 
operations 

Streamflow prediction consists of simulating complex hydrological processes that lead to the 
transformation of precipitation into runoff through various types of hydrological models, ranging 
from simple conceptual models to complex physically-based models. In snowmelt-dominated 
watersheds, the majority of streamflow occurs during the spring snowmelt period. Uncertainties 
and errors in simulated snow accumulation, melt timing and melt rate can consequently cause 
large errors in streamflow response simulations and predictions. It is widely recognized that 
consideration of uncertainty in snowmelt timing and melt rate is critical for both research and 
operational modelling. Errors in snowmelt timing and melt rate simulations are one of the most 
common and largest sources of streamflow predictions errors in snowmelt-dominated 
watersheds. 

Kemijoki Oy is the most important producer of hydropower and regulating power in Finland. 
Kemijoki Oy operates 16 hydropower plants and 4 regulated reservoirs in the Kemijoki 
watercourse area. Currently hydropower production accounts for approx. 19% of total energy 
production in Finland, which whilst on-par with European averages is quite low when compared 
to the neighbouring Scandinavian countries. For example, in Sweden hydropower accounts for 
nearly half of the country’s electrical energy production. As with other hydropower operations 
elsewhere, the river’s natural conditions during different seasons of the year are the most 
important factor affecting the planning of hydropower production. In addition to fluctuations in 
natural conditions, hydropower plant operations planning involves other holistic considerations 
such as energy consumption demand and the many users of the rivers, for example bobbers, 
fishermen and boaters. 

Spring snowmelt driven inflows to hydropower reservoirs (typically from mid-April/early-May 
to the end of June) accounts for between 55 and 70% of the total annual inflows to reservoirs in 
the Kemijoki watershed. This means that most of the annual water resources available for 
hydropower production is only available to producers during this period. It is therefore essential 
to have carefully planning and reservoir management schemes in place well before the onset of 
the peak inflow volumes. Reservoir management is important as the energy demand is out of 
phase with the natural availability of the water resources; typically, demand is higher during the 
colder months when the inflows are lower and vice versa. Therefore, hydropower producers need 
to redistribute the availability of these resources from the spring inflow periods to other times of 
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the year when electricity demand is higher i.e. during the six months of colder winter, while 
maintaining the balance between a sufficiently large volume of water for optimal production and 
enough remaining capacity for safe flood risk management. The typical strategy for hydropower 
operators is to have reservoirs at around 90% capacity at the end of the spring inflow period 
which is then ideally maintained until the beginning of winter. To achieve this, operators require 
reliable seasonal forecast information to help them in planning the operations both leading up to 
and during the spring high inflow period. 

 

 

Figure 1 Location of the Kemijoki watershed and the study basin Ounasjoki basin. The green 
circles indicate the locations Kemijoki Oy hydropower plants and streamflow regulation 
structures. Red/white circles indicate the location of natural unregulated water level / 
streamflow observation stations operated by SYKE (the Finnish Environment Institute). 
Streamflow observations from the Marraskoski observation station are used assess hydrological 
model performance. 

This report focuses on case studies assessing the accuracy of spring season, snowmelt driven 
streamflow ensemble hindcasts in Northern Finland. The accuracy of streamflow ensemble 
hindcasts are assessed in an unregulated tributary sub-basin (Ounasjoki Basin) of the Kemijoki 
watershed (Fig.1). The main water course of the Kemjoki watershed is 550 km long and is the 
longest river in Finland. It runs through municipalities of Kemijärvi and Rovaniemi before 
reaching the Gulf of Bothnia at Kemi. The Kemjoki watershed has a subarctic climate with short, 
mild summers and very cold and snowy winters. The average (30 years) annual temperature is 
just above freezing and snow cover generally lasts from mid-October to mid-May, with an 
average of 213 days with snow cover per annum. The coldest months are January and February 
with average temperatures ranging from -10 to -14°C. Although precipitation is relatively light 
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during April and May, annual high runoff peaks are observed during this period due to snow 
melt. 

Three recent and hydrologically unique spring snowmelt seasons (2018, 2019 and 2020) are 
assessed by driving a hydrological model with seasonal meteorological forecasts performed by 
an operational seasonal forecast system SEAS5 by the European Centre for Medium-range 
Weather Forecasts (ECMWF).  

The hydrological model used in this study, FMI (Finnish Meteorological Institute) Hydrological 
Operations and Predictions System (HOPS), requires daily precipitation and evapotranspiration 
sums as well as daily average 2-metre air temperature fields as forcing input data.   

 

2. Meteorological forcing and bias correction 
Meteorological fields needed for driving hydrological model are daily means of 2-metre 
temperature, and daily sums of total precipitation and evaporation. These fields are obtained 
from seasonal forecasts performed by operational seasonal forecast system SEAS5 by European 
Centre for Medium-range Weather Forecasts (ECMWF). Forecasts are initialized at first day of 
each month and run for seven months. For this application, forecasts initialized on 1 April are 
employed. The fields are interpolated on regular 0.5°×0.5° grid in latitude and longitude. 

In order to be applicable for impact studies, forecast outputs usually require bias correction to 
remove the difference between modelled and observed climates. This difference, if not removed, 
may make outcomes of impact calculations unrealistic. For 2m temperature bias correction we 
first calculated the mean difference between SEAS5 and ERA-5 over the control period at each 
grid point and each forecast day. Thereafter the difference at each grid point was smoothed with 
a 15-day moving average. Finally, the difference was removed from the forecasts. The control 
period is 1981-2017. The bias corrected procedure was applied to the forecasts for years 2018, 
2019 and 2020 which were used for the hydrological modelling. 

For daily total precipitation and evaporation sums, the mean ratios between SEAS5 and ERA-5 
were calculate instead of the difference; otherwise the bias correction procedure is the same as 
that for the temperature. 

A more elaborated quantile mapping method was also tried to remove the bias. In quantile 
mapping method the forecast values are mapped in the observed space, i.e. the bias correction 
depends on the forecasted value. However, we did not find a noticeable difference between the 
mean bias correction and quantile mapping and therefore the mean bias correction was used in 
the study. 
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Before moving to the results of hydrological modelling, we first quantify the role of bias 
correction for improving the forecasts. For this purpose, the forecasts from the control period 
1981-2017 were used. Each forecast from this period was bias corrected using the procedure 
outlined above; however, this particular year was not used for calculating the biases to avoid 
artificial skill improvement. The mean RMS forecast errors for this period are shown in Figure 2, 
Figure 3 and Figure 4 for the first three forecast month. 

 

Figure 2. Mean root mean square errors of 2-metre temperature for the forecasts initialized on 1 
April during 1981-2017. Shown are errors for (a,b) April, (d,e) May and (g,h) June for (a,d,g) 
raw and (b,e,h) bias corrected forecasts. Differences between bias corrected and raw forecasts 
are shown in (c,f,i) for April, May and June correspondingly. 

As expected, RMS error grows, in general, with forecast time. For 2-metre temperature (Fig.2) 
the largest absolute forecast error is over northwestern Russia and Scandinavian maintains. The 
bias correction reduces forecast error most effectively over Scandinavian mountains and also 
over Baltic and White Seas during 2nd and 3rd forecast months. RMS error for total precipitation 
(Fig. 3) is largest over Scandinavian mountains. Unlike in 2-metre temperature, the forecast error 
over the mountains is not reduced by the bias correction but is somewhat increased. The positive 
impact of the bias correction is mostly seen over Russia. Finally, in case of evaporation (Fig. 4), 
the RMS error is more spatially homogenous. The largest errors are found over ocean and also 
over Russia. The impact of bias correction on evaporation forecast error is mostly negligible 
although some reduction of forecast error can be found in limited areas over Baltic Sea.  
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Figure 3. The same as Figure 1 but for total precipitation. 

 

Figure 4. The same as Figure 1 but for evaporation. 
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3. Hydrological modelling and streamflow simulation 
FMI’s Hydrological Operations and Predictions System (HOPS) consists of distributed and 
modified version of the Sacramento Soil Moisture Accounting Model (SAC-SMA; Burnash, 
1995) coupled with a modified version of the SNOW-17 temperature index snow accumulation 
and ablation model, a soil temperature model based on Rankinen et al. 2004 and an in-house 
developed distributed routing model accounting for overland, and channel flow retention and 
attenuation, based on hydrographic properties. The parameters for the SAC-SMA model are 
derived from a semi-physical a-priori parametrization scheme introduced by Koren et al. 2000. 
Satisfactory simulation results have been achieved by running the modelling system without any 
calibration (apart from snowmelt base temperature and parameters governing snowmelt rates) or 
deviation from the a-priori parametrization. This allows rapid model implementation even in 
areas where hydrological reference data is either sparse or not available. 

The HOPS model is used operationally by FMI to provide daily hydrological nowcasts and 10-
day deterministic forecasts for Kemijoki Oy over the entire Kemijoki watershed. The first 
seasonal ensemble forecasts tests were conducted during the spring of 2020 with the aim of 
providing as much lead time as possible to hydropower operators due to unusually large volume 
of snow observed over the watershed during the winter of 2019-2020. The results of the 
preliminary seasonal ensemble forecast for the snowmelt period were however rather 
inconclusive and it was difficult to quickly assess the usefulness of such forecasts. Therefore, it 
was decided to conduct a larger snowmelt season ensemble forecasting accuracy assessment with 
the latest three snowmelt seasons (2018, 2019 and 2020) with the aim of attempting to conclude 
an approach that could prove useful in interpreting future snowmelt season forecasting results to 
the end user, Kemijoki Oy.     

For the purposes of this report, the performance of the modelling system was evaluated by 
running the model with historical meteorological forcing (daily precipitation sum, average daily 
temperature and daily evapotranspiration sum) between the years 2017-2020, after an initial cold 
start period of 2016-2017. Specifically, the model’s performance was evaluated by ingesting 
ERA-5 Land meteorological data instead of in situ observations in order to maintain consistency, 
especially with the snow melt model’s parametrization, to the seasonal meteorological dataset 
used to drive the seasonal ensemble forecasting as closely as possible. Simulated streamflow is 
compared to observed streamflow at the outlet point of the Ounasjoki basin, Marraskoski   
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Figure 2. HOPS model validation runs hydrograph at the Marraskoski observation station. 

 

Overall, the HOPS model validation period simulation for the Ounasjoki basin can be considered 
as satisfactory, if not good. The Nash-Sutcliffe coefficient of efficiency was 0.902, the 
correlation between observed and simulated discharge was 0.901 while the RMSE was 53 m3/s 
and the Mean Average Error was 30 m3/s. The shape of the simulated hydrograph matches the 
observed hydrograph very well (Fig. 5). The model tends however to somewhat overestimate late 
autumn streamflow whilst underestimating post spring peak streamflow. Both model tendencies 
are however very likely due to deficiencies in forcing evapotranspiration data; i.e. overestimation 
during early summer and underestimation during late summer and autumn. These issues however 
have very little bearing on snowmelt peak flow and timing simulations and therefore have a 
negligible effect on this study’s focus. Winter period low flow months are generally simulated 
well by the model. Validation results for the year 2020 were omitted due to very clear problems 
in winter period low flow observations data. Low flow observations for the winter period of 
2019-2020 were nearly quadruple of those observed since the beginning of observations (1971) 
at the Marraskoski station. Including these in model validation would introduce a clear bias and 
skew validation results. The suspected errors in streamflow observations during this period will 
be revisited later in this report. 

 

4. Snowmelt period hydrological ensemble hindcasts 
For this report, two types of ensemble seasonal streamflow hindcasts are run for the spring 
snowmelt periods of 2018, 2019 and 2020; 1) Un-adjusted ensemble hindcasts and 2) Bias-
adjusted ensemble hindcasts. Both types of hindcasts use ECMWF SEAS5 meteorological 
forecast data (as explained in previous chapters) as a basis to drive the HOPS model streamflow 
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simulations. Each hindcast is run with a 90-day lead time from April 1st to June 29th covering the 
snowmelt driven stream peak flow period.  

The setup procedure for each hindcast consists of the following steps: 

1. Initial HOPS model state parameter conditions are extracted from HOPS validation 
runs’ conditions corresponding to those of the ensemble hindcast forecasts’ first valid 
date -1 day. This is repeated for each year and the same initial conditions are used for 
both un-adjusted and bias-adjusted ensemble hindcast runs. 

2. Each ensemble hindcast is run for a period resulting in a “lead-time” of 90-days for 
each year and type of ensemble hindcast type run, mimicking a 90-day forecast issued on 
April 1.  

3. Each ensemble hindcasts’ streamflow predictions are compared to observed 
streamflow at the outlet of the Ounasjoki basin (Marraskoski). For each hindcast 5 critical 
aspects of the ensemble streamflow forecast are assessed; 1) Difference in onset of 
snowmelt streamflow in days, 2) Difference in peak streamflow timing in days, 3) 
Difference in peak streamflow volume as a percentage to observed, 4) Difference in 
accumulated streamflow volume as a percentage to observed and 5) Difference in number 
of days considered “high streamflow” days. In the case of the Ounasjoki basin high 
streamflow days are considered as days where simulated streamflow exceeds 300 m3/s. 
This is direct measure of the steepness of the peak streamflow hydrograph; a higher 
number indicating a shallower hydrograph shape and vice versa.  

A range of observed spring snowmelt season streamflow derived from 50-years of observation is 
also included for each ensemble hindcast simulation comparison to visually inspect the skill of 
the hindcasts ensembles to distinguish season specific conditions from climatological averages. 

 

4.1 Snowmelt period 2018 

The winter of 2017-2018 saw exceptionally high snowfall during the early months of the snow 
accumulation period. In November 2017 there was an estimated 28% more snowfall compared to 
the previous ten-years. The following two months (December 2017 and January 2018) were on 
par with the previous ten-year average. The later part of the winter/spring, February through 
June, was considerably drier than the ten-year average. February 2018 and May 2018 in 
particular, were significantly drier and sunnier, with February experiencing colder than average 
temperatures while May significantly higher temperatures than on average.  
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Figure 3. Seasonal (un-adjusted) snowmelt period ensemble forecast member streamflow range, 
spring, 2018, HOPS validation run streamflow, SYKE observed streamflow and 50-year 1st 
quartile, median and 3rd quartlie streamflow observations. 

 

 

Figure 4. Seasonal (bias-adjusted) snowmelt period ensemble forecast member streamflow 
range, spring, 2018, HOPS validation run streamflow, SYKE observed streamflow and 50-year 
1st quartile, median and 3rd quartlie streamflow observations. 

Overall, the temperature during the snow accumulation period, between November 2017 and end 
of March 2018 was clearly cooler than the previous ten-years. The average temperature during 
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the primary snowmelt period between mid-April and mid-May was however significantly higher 
than the previous ten-years. In particular, the Ounasjoki basin experienced significantly higher 
than average temperatures from the beginning of May until mid-May resulting in very rapid 
snowmelt. The onset of snowmelt began on par with the ten-year average, however the high rate 
of snowmelt from the beginning of May to mid-May resulted in a very sharp single runoff peak 
that resulted in significant flooding of the Ounasjoki river. 

 

 

Figure 5. Percentage breakdown of key evaluation metrics of seasonal ensemble hindcast 
member errors, spring 2018. 
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Table 1. Categorical un-adjusted and bias-adjusted streamflow timing metrics compered to 
observed, spring 2018 

  
Diff. in 
Days: 

> -
21 -20 -15 -10 -5 +/- 2 5 10 15 20 

> 
+21 

No 
Adj. 

Snowmelt 
Start 0 0 0 29.4 17.6 31.4 5.9 9.8 3.9 0 2 

 
Peak Flow 0 3.9 9.8 17.6 11.8 13.7 13.7 13.7 9.8 3.9 2 

  
High 
Flow 0 0 0 0 0 7.8 7.8 15.7 27.5 21.6 19.6 

Bias 
Adj. 

Snowmelt 
Start 0 0 5.9 37.3 21.6 21.6 5.9 3.9 3.9 0 0 

 
Peak Flow 0 5.9 13.7 29.4 7.8 25.5 9.8 5.9 2 0 0 

 

High 
Flow 0 0 0 0 0 5.9 9.8 39.2 21.6 7.8 15.7 

 

Table 2. Categorical un-adjusted and bias-adjusted streamflow volume metrics compered to 
observed, spring 2018. 

  Diff in %: 
> -

25% 
-

25% 
-

20% 
-

15% 
-

10% 
+/- 
5% 10% 15% 20% 25% 

> 
+25% 

No 
Adj. Peak Flow 49 15.7 7.8 5.9 3.9 5.9 5.9 2 2 2 0 

  
Accum. 

Flow 0 0 2 5.9 7.8 29.4 15.7 15.7 3.9 9.8 9.8 
Bias 
Adj. Peak Flow 43.1 11.8 9.8 9.8 11.8 7.8 2 0 2 0 2 

 

Accum. 
Flow 0 0 0 3.9 11.8 31.4 13.7 11.8 9.8 9.8 7.8 

 

In general, both the un-adjusted and bias-adjusted seasonal ensemble streamflow hindcasts for 
2018 predict a very wide range of individual streamflow volumes and peak times as was 
expected (Fig. 6 and Fig. 7). The un-adjusted ensemble median as well as the daily 1st and 3rd 
streamflow quartiles bear a striking resemblance to the corresponding 50-year observations, with 
only a slight deviation towards an earlier than usual snowmelt onset and streamflow peak time. 
This visible tendency to predict an earlier than observed snowmelt period is somewhat increased 
with the bias-adjusted ensemble runs. Since the snowmelt season was in terms of onset and peak 
flow timing quite close to the long-term average, the 50-year observational median and range of 
streamflow fits well with both the HOPS simulated validation run and observed streamflow. 
Approximately 65% of bias-adjusted hindcast ensembles predict an earlier than observed 
snowmelt onset time, whereas only 47% of un-adjusted predict an earlier than observed 
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snowmelt onset time. Further, the majority (31%) of un-adjusted ensemble members predict a 
snowmelt onset difference to observed of only +/-2 days (Fig. 8 and Table 1). 

A clear benefit of meteorological bias-adjustment can however be observed in that the individual 
predicted peak flow timing difference to observed peak flow is reduced and the spread of peak 
flow occurrences are less varied. Approximately 78% of the ensemble members of the bias-
adjusted hindcast exhibit a +/-10 day difference to observed peak flow timing, whereas the in the 
un-adjusted hindcast the percentage of peak flow occurrences for the same period is 70%. 
Another, but less obvious and slightly less meaningful in terms of hydropower operations, 
benefit from bias-adjustment is the decrease in high flow (> 300 m3/s) days difference to 
observed. Nearly 40% of the ensemble members have a difference to observed of only +5-10 
days, indicating a that a healthy majority of ensemble members produce a rather sharp 
hydrograph, with a fast rising and declining limb as was observed. The un-adjusted ensemble 
hindcast noticeably spreads the hydrograph base over many more days, with approx. 69% of 
ensemble members having a more than 10 days error to observed high flow days total (Fig. 8 and 
Table 1). 

The error in peak flow volume however for both hindcast runs is quite significant, with both 
hindcast runs producing a majority ensemble member error of >-25 % to observed peak flow 
volume. The bias-adjusted hindcast run does however decrease this error, but not very 
significantly (Fig. 8 and Table 2). The reason for the majority of both hindcasts runs in 
underestimating the peak flow volume is due to both hindcast types generally overestimating 
overall high flow days, thereby depleting their snowmelt reservoir fields too soon and too slowly 
to produce the observed sharp hydrograph, albeit the bias-adjusted hindcast runs tends to provide 
slightly better results. In terms of accumulated streamflow, there is little difference between the 
two hindcast run types. This is as be expected since most of the excess moisture in the watershed 
had already accumulated before the initiation of the ensemble hindcast runs and forthcoming 
precipitation during the simulation period has very limited impact on total accumulated runoff 
for the analysis period. 

 

4.2 Snowmelt Period 2019 

With regard to snowfall and accumulation the winter of 2018-2019 was fairly typical, however 
February and March 2019 saw significantly more snowfall than an average. April 2019 was on 
the other hand however abnormally dry. Overall the temperature during the snow accumulation 
period, between November 2018 and end of March 2019 was very typical and comparable to 
those observed during the past ten-years. Similarly, the average temperature during the primary 
snowmelt period between mid-April and mid-May was also typical and on-par with the previous 
ten-years. The estimated snowpack water content was only slightly lower than during the past 
ten-years. Since the average temperature during the primary snowmelt period between mid-April 
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and mid-May was also typical, the snowmelt peak time also occurred within the “normal” 
timeframe of snowmelt. Average observed streamflow volumes for the snowmelt period (April 
to June 2019) were very typical and on-par with those observed during the previous ten-years. 
Regarding the shape of the runoff hydrograph the most dominating features are the relatively 
high double peak snow melt driven runoff peaks, and the rapid rate at which runoff volumes 
increase from very low volumes to relatively high volumes.  

 

 

Figure 6. Seasonal (un-adjusted) snowmelt period ensemble forecast member streamflow range, 
spring, 2019, HOPS validation run streamflow, SYKE observed streamflow and 50-year 1st 
quartile, median and 3rd quartlie streamflow observations. 
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Figure 7. Seasonal (bias-adjusted) snowmelt period ensemble forecast member streamflow 
range, spring, 2019, HOPS validation run streamflow, SYKE observed streamflow and 50-year 
1st quartile, median and 3rd quartlie streamflow observations. 

 

 

Figure 8. Percentage breakdown of key evaluation metrics of seasonal ensemble hindcast 
member errors, spring 2019. 



 

  Work Package 6 / Deliverable 6.3    

52 

Table 3. Categorical un-adjusted and bias-adjusted streamflow timing metrics compered to 
observed, spring 2019. 

  
Diff. in 
Days: 

> -
21 -20 -15 -10 -5 +/- 2 5 10 15 20 

> 
+21 

No 
Adj. 

Snowmelt 
Start 0 0 0 2 7.8 39.2 19.6 21.6 3.9 3.9 2 

 
Peak Flow 0 3.9 9.8 17.6 11.8 15.7 13.7 13.7 7.8 3.9 2 

  
High 
Flow 0 3.9 19.6 17.6 15.7 23.5 3.9 7.8 3.9 0 3.9 

Bias 
Adj. 

Snowmelt 
Start 0 0 0 7.8 19.6 41.2 13.7 9.8 3.9 3.9 0 

 
Peak Flow 0 5.9 13.7 33.3 7.8 21.6 11.8 3.9 2 0 0 

 

High 
Flow 0 3.9 17.6 39.2 11.8 9.8 7.8 5.9 0 3.9 0 

 

 

Table 4. Categorical un-adjusted and bias-adjusted streamflow volume metrics compered to 
observed, spring 2019. 

  Diff in %: 
> -

25% 
-

25% 
-

20% 
-

15% 
-

10% 
+/- 
5% 10% 15% 20% 25% 

> 
+25% 

No 
Adj. Peak Flow 3.9 0 2 2 5.9 5.9 5.9 3.9 13.7 9.8 47.1 

  
Accum. 

Flow 0 2 5.9 7.8 21.6 25.5 13.7 7.8 5.9 3.9 5.9 
Bias 
Adj. Peak Flow 2 0 5.9 0 0 9.8 5.9 2 5.9 13.7 54.9 

 

Accum. 
Flow 0 0 3.9 13.7 17.6 29.4 13.7 5.9 7.8 3.9 3.9 

 

As with the hindcast runs for 2018, in general, both the un-adjusted and bias-adjusted seasonal 
ensemble streamflow hindcasts for 2019 predict a very wide range of individual streamflow 
volumes and peak times as was expected (Fig. 9 and Fig. 10). However due to the observed 
multi-peaked and very variable nature streamflow during the snowmelt period of 2019, the 
ensemble hindcasts runs appear to predict the streamflow conditions quite well. Again, the un-
adjusted ensemble median as well as the daily 1st and 3rd streamflow quartiles bear a striking 
resemblance to the corresponding 50-year observations, with only a slight deviation towards an 
earlier than usual snowmelt onset and streamflow peak time. As with the simulation runs for 
2018, this visible tendency to predict an earlier than observed snowmelt period is somewhat 
increased with the bias-adjusted ensemble runs.  
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Contrary to 2018, and since the onset of snowmelt occurred somewhat earlier than usual in 2019, 
the tendency of the hindcast model runs to produce snowmelt prematurely provides a better fit 
with observations. This tendency is yet again exacerbated by the bias-adjusted hindcast ensemble 
runs. Approximately 27% of bias-adjusted hindcast ensembles predict an earlier than observed 
snowmelt onset time, whereas only 10% of un-adjusted predict an earlier than observed 
snowmelt onset time. Further, the majority (40%) of un-adjusted ensemble and the majority 
(41%) of bias-adjusted ensemble member forecasts predict a snowmelt onset difference to 
observed of only +/-2 days (Fig. 11 and Table 3). 

As with 2018, the bias-adjusted peak flow times are more concentrated around the actual 
observed peak flow day. Approximately 41% of both the bias-adjusted and un-adjusted hindcasts 
only exhibit a +/-5 day difference to observed peak flow timing. Of the 51 bias-adjusted hindcast 
ensemble members 21% have a peak flow timing difference to observed peak flow time of 
merely +/-2 days, while 15% of the un-adjusted hindcast ensemble members have their peak 
flow within the same timeframe. Significantly, the bias-adjusted hindcast correctly predicts an 
early streamflow peak with 33% of forecasts predicting peak flow to occur up to 10 days before 
the observed peak. Although, this could be interpreted as an error, the majority of forecasts 
correctly predict both an early peak and a later peak flow event, the peak flow volumes are 
simply reversed, i.e. the lower peak actually occurred before the higher peak (Fig. 11 and Table 
3).   

Whilst the peak flow timing predicted by the bias-adjusted hindcasts is more accurate than with 
the un-adjusted hindcasts, bias-adjustment again (as with 2018) decrease the amount of high flow 
(> 300 m3/s) days. A decrease in the number of high flow days of more than -10 days to observed 
is predicted by approx. 61% of ensembles. This results in shorter and sharper flow peaks. The 
same situation can be observed for the un-adjusted hindcast runs albeit to a lesser degree with 
41% of forecast members having more than -10 high flow days when compared to observed 
streamflow (Fig. 11 and Table 3). 

The error in peak flow volume however for both hindcast runs is, as with 2018 significant. A 
clear majority of both hindcast runs produce a difference of >+25 % to observed peak flow 
volume. Since the bias-adjusted runs tend to concentrate streamflow peaks, there are more 
ensemble members with higher than observed peak flow volumes than with the un-adjusted 
hindcast runs (Fig. 11 and Table 4). In contrast to 2018, the reason for the majority of both 
hindcasts runs in overestimating the peak flow volumes is due to both hindcast types generally 
underestimating overall high flow days, thereby depleting their snowmelt reservoir fields too 
rapidly. In terms of accumulated streamflow, there is little difference between the two hindcast 
run types, as was the case with 2018. 
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4.3 Snowmelt Period 2020 

As with the winter of 2017-2018, the winter of 2019-2020 saw exceptionally high snowfall 
during the early months of the snow accumulation period. October 2019 saw extraordinarily 
large amounts of snowfall that due to the somewhat exceptionally cool temperatures remained 
until the onset of snowmelt in the spring of 2020. Although typically, the first snowfall events 
are generally observed in October, usually these accumulations tend to melt away before the 
onset of enduring snow cover. An enduring snowpack usually does not form until November or 
December. The winter of 2019-2020 was exceptional also in that temperature in Northern 
Finland remained constantly above freezing through-out the winter, while in southern and central 
Finland the low pressure from the south kept the weather warm and wet. Although many parts of 
the Northern Finland were 2-5° C milder than usual, these cannot be considered exceptional. 
Meanwhile through-out the winter of 2019-2020 precipitation levels in north Finland were 1.5 – 
2 times higher than usual resulting in much higher snow water content than is usually observed. 
Although there was grave concern for record flooding in the spring of 2020 due to unusually 
large snow reservoir volumes, for the most part, although there was considerable flooding, record 
breaking floods did not occur. This is largely due to the considerably cooler than average 
temperatures between April and May 2020 coupled with relatively dry conditions. As with the 
winter of 2017-2018, snowmelt driven streamflow occurred in a single peak. This streamflow 
peak however occurred considerably later than during the previous ten-year average and the rate 
of snowmelt was also considerably slower than expected resulting an elongated peak streamflow 
curve. 

 

Figure 9. Seasonal (un-adjusted) snowmelt period ensemble forecast member streamflow range, 
spring, 2020, HOPS validation run streamflow, SYKE observed streamflow and 50-year 1st 
quartile, median and 3rd quartlie streamflow observations. 
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Figure 10. Seasonal (bias-adjusted) snowmelt period ensemble forecast member streamflow 
range, spring, 2020, HOPS validation run streamflow, SYKE observed streamflow and 50-year 
1st quartile, median and 3rd quartlie streamflow observations. 

 

 
Figure 11. Percentage breakdown of key evaluation metrics of seasonal ensemble hindcast 
member errors, spring 2020. 
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Table 5. Categorical un-adjusted and bias-adjusted streamflow timing metrics compered to 
observed, spring 2020. 

  
Diff. in 
Days: 

> -
21 -20 -15 -10 -5 +/- 2 5 10 15 20 

> 
+21 

No 
Adj. 

Snowmelt 
Start 2 27.5 25.5 21.6 9.8 7.8 3.9 0 2 0 0 

 
Peak Flow 17.6 25.5 13.7 23.5 11.8 2 2 2 2 0 0 

  
High 
Flow 0 0 0 0 5.9 15.7 3.9 35.3 7.8 21.6 9.8 

Bias 
Adj. 

Snowmelt 
Start 5.9 37.3 37.3 11.8 2 3.9 2 0 0 0 0 

 
Peak Flow 43.1 19.6 23.5 9.8 2 2 0 0 0 0 0 

 

High 
Flow 0 0 0 0 5.9 15.7 13.7 35.3 7.8 11.8 9.8 

 

Table 6. Categorical un-adjusted and bias-adjusted streamflow volume metrics compered to 
observed, spring 2020. 

  Diff in %: 
> -

25% 
-

25% 
-

20% 
-

15% 
-

10% 
+/- 
5% 10% 15% 20% 25% 

> 
+25% 

No 
Adj. Peak Flow 7.8 11.8 5.9 9.8 3.9 15.7 11.8 3.9 9.8 3.9 15.7 

  
Accum. 

Flow 2 11.8 17.6 13.7 21.6 25.5 3.9 3.9 0 0 0 
Bias 
Adj. Peak Flow 7.8 2 5.9 11.8 3.9 17.6 9.8 5.9 5.9 7.8 21.6 

 

Accum. 
Flow 2 7.8 21.6 17.6 21.6 21.6 3.9 2 2 0 0 

 

The spring of 2020 saw both high peak streamflow volumes and a much later than average peak 
flow time in the Kemijoki watershed as a whole and in the study basin of Ounasjoki as well. The 
abnormally late spring snowmelt season causes large errors for both the un-adjusted and bias-
adjusted seasonal ensemble streamflow hindcasts for 2020 (Fig. 12 and Fig. 13). This may partly 
be due to a longer lead-time to peak flow and/or due to the fact the neither hindcast type is able 
to accurately predict the meteorological conditions that occurred in general. Ignoring the 
obviously large errors, it can be observed that as with the other hindcasts runs for 2018 and 2019 
the bias-adjusted ensemble runs tend to predict earlier snowmelt onset timing than the un-
adjusted hindcast runs do. Further, and again, the un-adjusted ensemble median as well as the 
daily 1st and 3rd streamflow quartiles bear a striking resemblance to the corresponding 50-year 
observations, with only a slight deviation towards an earlier than usual snowmelt onset and 
streamflow peak time. Approximately 94% of bias-adjusted hindcast ensembles predict an earlier 
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than observed snowmelt onset time, and 86% of un-adjusted predict an earlier than observed 
snowmelt onset time. Further, the majority (55%) of un-adjusted ensemble and the majority 
(37%) of bias-adjusted ensemble member forecasts predict a snowmelt onset difference to 
observed of equal to or over -15 days (Fig. 14 and Table 5). As can be seen from Figure 12 and 
Figure 13 there appears to be a clear base level discrepancy with streamflow observations for the 
low flow period, before the onset of snowmelt, as mentioned previously in this report. This 
however does not directly affect the analysis of the hindcast runs since the focus is on snowmelt 
onset and peak flows.  

Nearly all the bias-adjusted hindcast run peak flow times occur significantly earlier than 
observed. The un-adjusted hindcast run only has 16% of forecasts with a +/-5 days error to 
observed peak flow time (Fig. 14 and Table 5). The difference between the number of high flow 
days (>300 m3/s) for the bias-adjusted and un-adjusted hindcasts runs is negligible, however the 
difference of both to observed is considerable. A large majority of ensemble members for both 
hindcasts overestimate the number high flow days significantly (Fig. 14 and Table 5). 

The error in peak flow volume for both hindcast runs is very variable. It is not possible to 
distinguish any clear trend or majority in peak flow volumes for either hindcast run (Fig. 14 and 
Table 6). Interestingly, in contrast to the other simulation years, both hindcast runs have a clear 
tendency to underestimate accumulated streamflow for the spring snowmelt period. This 
however is clearly due to the fact that the low streamflow observations appear to have a base 
level bias, and such can be ignored (Table 6). 

 

5. Conclusions 
Daily long-term ensemble streamflow forecasts covering the snowmelt period have been 
requested by the end-user of FMI’s observations and forecast data, Kemijoki Oy, for hydropower 
optimization purposes and planning. With this in mind, a preliminary analysis of the potential of 
such forecasts to provide meaningful information to the end user as conducted. The main 
objective of this study was to assess the forecasting skill of seasonal spring snowmelt ensemble 
hydrological simulations in an unregulated basin of the Kemijoki watershed, namely in the 
Ounasjoki basin. Seasonal, ensemble hindcasts initiated on April 1st with a 90-day lead time were 
configured for the years 2018, 2019 and 2020. 

The main findings are summarised as follows: 

1) Seasonal hydrological forecast for snowmelt periods driven by meteorological ensemble 
forecasts tend to only slightly improve forecasts based purely on analysis of long-term 
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historical streamflow observations. This is likely particularly true if a reasonable means 
of interpreting the results of the ensemble forecast are not available. 

2) Meteorological bias-adjustment tends to reduce the spread of ensemble streamflow 
forecasts thus reducing overall uncertainty. This however does not mean that the overall 
skill of the hydrological forecast is improved. 

3) Meteorological bias-adjustment tends to (at least in this study) result in earlier snowmelt 
onset as well as sharper rising hydrograph limbs and recession curves. 

4) Interpretation of seasonal hydrological forecasts for snowmelt periods should not be 
based on ensemble mean or other statistical metrics involving all ensemble members, but 
rather a means of categorisation is required. For example, mixing ensemble members 
with snowmelt driven peak flow occurring early in the analysis period with those having 
a late peak flow to calculate ensemble means as well as quartiles can lead to dilution of 
overall streamflow peaks as well as recession curves, since for each forecast snowpack 
water equivalent is generally not a replenishable reservoir field. 

5) Ensemble spread whilst indicating larger forecast uncertainty, tends to also indicate larger 
forecast errors. This is potentially useful to users as the ensemble spread could be used as 
a measure of the forecast quality. 

Looking forward, future studies need to address some form of ensemble member categorisation 
and assignment of probabilities to those in order to produce a more meaningful and easily 
interpretable seasonal snowmelt period forecast. Regarding the bias adjustment of 
meteorological seasonal forecast data, results from this study show that while the seasonal 
forecasts where bias adjustment was conducted were disappointing, the performance of the 
seasonal hydrological forecasts were in some respects improved. The methodology behind bias 
adjustment of meteorological data should possibly be revisited.  

Further, perhaps a better understanding of how the performance of the different modelling 
components are affected by the initial conditions and lead time would shed more light on how to 
best approach the shortcomings of this study. Further development and testing along these lines 
are planned for the near future. 
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