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Summary  
 

Wildfires constitute a major natural hazard in many areas of the world. In this study, we analyze 
whether dangerous episodes can be predicted months in advance using the seasonal 
predictions of coupled ocean-atmosphere models, focusing the analysis in the  
EuroMediterranean (EUMED) region, where the serious wildfires of the last years are of serious 
concern. We built upon previous studies showing the adequacy of the Fire Weather Index 
System (FWI, INDECIS-ISD 128) in order to characterize actual fire danger conditions and the 
potential seasonal predictability of FWI in certain areas of EUMED, further advancing this 
knowledge by analyzing the differing seasonal predictability of the various intermediate FWI 
components. To this aim, we consider two different forecasting systems of sufficient hindcast 
length and input variable availability (NCEP-CFSv2 and ECMWF-System4) and bias-corrected 
predictions of the different FWI components, in order to account for the systematic model biases 
present. 
 

When considering the whole European domain, the seasonal forecast skill for the different FWI 
System components is similar to that of FWI. However, the results show that some of these 
components may improve fire danger predictability for particular regions, even at lead times of 2 
months, and even 3 months for some particular regions/forecasting systems. Due to the 
differing forecasting system performance across regions/components, our results suggest that 
multimodel ensembles of FWI component predictions may improve the seasonal predictability of 
fire danger over significant areas of Europe.  
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Introduction 
 

The use of coupled ocean-atmosphere prediction systems to inform decision-makers is currently 
receiving great interest from different sectors of economic and societal relevance such as land 
management, agriculture, hydrology and energy among others (see e.g.: Falloon et al. 2018, De 
Felice et al. 2015, Hamlet et al. 2002), due to their potential to assist decision-making through 
the provision of actionable, sector-relevant climate information a few months in advance (Kumar 
2010). In the framework of wildfire prevention, seasonal predictions have a great potential to aid 
decision-making (see e.g. Bedia et al. 2018, Turco et al. 2018), helping fire agencies to improve 
the efficiency of wildfire suppression efforts during severe fire seasons and optimize the 
available economic, technical and human resources through the provision of actionable 
information. Even marginal improvements in suppression efficiency have the potential to prevent 
significant damages and economic costs derived from wildfires (Preysler and Westerling 2007); 
in this sense, the prediction of dangerous fire seasons a few weeks to months in advance may 
help to more efficiently reallocate resources to fire prevention and suppression in a given 
period/region. 
 

Fire danger can be defined as the chance of a fire to start and its potential spread, intensity and 
difficulty of suppression, given the current meteorological conditions. Specific indices are 
routinely used by fire agencies across the world based on fire weather variables, providing a 
synthetic measure of fire danger based on the meteorological conditions. As a result, fire danger 
indices act as meters (see, e.g. Fugioka et al., 2009) that provide a quantitative measurement 
by which to compare fire seasons and to contrast fire problems among different regions. One of 
the most widely used indices internationally is the Canadian Fire Weather Index System (FWI, 
van Wagner 1987). The ability of FWI to adequately characterize actual atmospheric dangerous 
conditions, as reflected by the interannual correspondence between FWI and burned area has 
also been shown both in the EUMED region (Viegas et al. 1999; Bedia et al. 2014). It is currently 
the fire danger system adopted by the EFFIS (European Forest Fire Information System) to 
provide harmonized operational fire danger forecasts throughout Europe (San-Miguel-Ayanz 
2013). In the context of the INDECIS Project, FWI is the index 128 of the INDECIS-ISD list 
(INDECIS Deliverable 4.2). 
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In the framework of short-term weather forecasting, Di-Giuseppe et al. (2016) found that three 
different fire indices, including FWI, were good predictors of dangerous conditions, skillfully 
detecting large fires on a global scale, highlighting the potential of fire danger modelling to 
predict dangerous episodes over large land areas of the globe a few days in advance. In the 
context of seasonal prediction previous studies have shown that coarse-scale seasonal 
predictions of FWI are skilful in areas of USA (e.g. Roads et al. 2005,2010) and the Euro-
Mediterranean regions (Bedia et al. 2018), highlighting their potential usefulness in operational 
fire danger seasonal prediction. However, the multi-variable nature of the FWI System and the 
different intermediate components involved in its calculation calls for a more detailed analysis of 
the contribution of the different components to the overall skill, which remain largely unknown, 
thus allowing for a more precise analysis of the seasonal FWI predictability and permitting the 
identification of those components more skillfully predicted. In fact, each component of the FWI 
system can be regarded as a fire danger index in itself revealing particular aspects of fire 
danger (see e.g. Wotton 2009) that can have their own relevance in fire danger modelling and 
prediction (see e.g.: Amatulli et al. 2013, Bedia et al. 2014a). 
 

The aim of this deliverable is contributing to our knowledge on the predictability FWI on 
seasonal time scales in Europe, by analysing the predictability of the different FWI system 
components, helping to improve the fire protection in the Euro-Mediterranean region. The 
potential improvement of seasonal FWI predictions is investigated through the skill assessment 
in the prediction of other components of the FWI system tracking changes in fuel moisture, and 
therefore more directly dependent on humidity (e.g. drought, duff moisture and/or fine fuel 
moisture codes): Drought Code (DC), Duff Moisture Code (DMC), Fine Fuel Moisture Code 
(FFMC), Built-up Index (BUI) and Initial Spread Index (ISI). 
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Data and Methods 

The Canadian Forest Fire Weather Index (FWI) System 
 

The FWI system (van Wagner 1987, Stocks et al. 1989) is a daily weather-based system 
calculated upon local noon standard time records of observed temperature and relative humidity 
(measured at 1.4 m above the ground in a radiation shielded screen), 10-m open wind speed, 
and 24-h accumulated precipitation. The FWI System consists of six components rating the 
effects of fuel moisture content and wind on a daily basis, based on various factors related to 
potential fire behaviour (Fig. 1). The first three components, Fine Fuel Moisture Code (FFMC), 
Duff Moisture Code (DMC) and Drought Code (DC), rate the average moisture content of fine 
surface litter, decomposing litter, and organic layers respectively, and are based on an 
exponential model of moisture exchange. The DC is a simple moisture “bookkeeping” system 
that uses an estimate of a day’s potential evapotranspiration and daily rainfall to track increases 
in wetness of the layer (Girardin and Wotton 2009). Wind effects are then added to FFMC to 
form the Initial Spread Index (ISI), used as an indicator of fire spread. Furthermore, DC and 
DMC are combined to produce the Build Up Index (BUI), rating the total amount of fuel available 
for combustion. BUI is then combined with ISI to produce the Fire Weather Index (FWI), a 
dimensionless index rating the potential fire line intensity given the meteorological conditions in 
a reference fuel type (mature pine stands) and level terrain. FWI can be later converted to the 
Daily Severity Rate (DSR) through a power function before averaging over weekly to seasonal 
time frames (van Wagner 1970), responding to the principle that higher fire danger should 
receive greater weight than lower fire danger when averaging over longer time periods or larger 
areas. 
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Figure 1. Schematic representation of the Canadian FWI system (adapted from Van Wagner 
1987). 
 

Obtaining representative noon local standard time records from model outputs is not always 
possible due to the relatively coarse temporal resolution of model data (6-hourly in this study), a 
problem that is particularly relevant in the case of areas with a relatively large longitudinal extent 
encompassing different time zones (e.g.: the EUMED region). These problems are further 
commented and exemplified in Bedia et al. (2018, see also supplementary material). In this 
study, and in order to obtain directly comparable predictions for the whole European domain 
analysed, we have used the appropriate input proxies of daily resolution, following previous 
work by Bedia et al. 2014. In particular, we calculated FWI using mean daily temperature and 
wind speed (instead of the corresponding instantaneous noon values) together with 24-
accumulated precipitation and daily minimum relative humidity. This combination of proxy inputs 
has been shown to yield the most similar results when using model data (Bedia et al. 2014). The 
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methodology for FWI system calculation from seasonal forecast datasets is further detailed in 
Bedia et al. (2018, see also additional details provided in the supplementary information of the 
aforementioned study). 

Seasonal prediction model data 

Data requirements 

 

The datasets used in this deliverable have been carefully chosen in order to fulfill some basic 
requirements. First, a proper assessment of the quality of a forecasting system requires a long 
enough hindcast period available to provide robust validation statistics. However, at the moment 
of preparing this deliverable, the hindcast period of the state-of-the-art seasonal prediction 
systems shipped by the Copernicus service encompasses the common period ~1993-2016 
(with the following exceptions: for forecasts issued up to October 2018 it is 1993-2015 for 
ECMWF and Met Office and 1993-2014 for Météo-France; for all NCEP forecasts it is 1999-
2016; see e.g. https://climate.copernicus.eu/charts/c3s_seasonal/c3s_seasonal_plume_mm). 
 

On the other hand, relative humidity is an important fire-weather variable, and it is an input for 
the calculation of the Canadian Fire Weather Index. Unfortunately, neither relative humidity, nor 
surface specific humidity (from which the latter can be accurately derived) are currently 
available from the C3S multimodel through the Climate Data Store 
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-
levels?tab=overview). In its place, derivation of relative humidity would be possible from surface 
dew-point temperature (currently available), but our preliminary tests have demonstrated that 
this approximation is far from reliable for low humidity values, as highlighted by the authors of 
the formula (Lawrence 2005), proposed for the estimation of relative humidity of moist air only 
(>50% humidity). 
 

For these reasons, the results presented in this Deliverable correspond to the European Centre 
for Medium Weather Forecasting (ECMWF) seasonal forecasting system 4 (Sys4,  Molteni et al. 
2011) and the National Center for Environmental Prediction (NCEP) coupled forecast system v2 
(CFSv2, Saha et al. 2013). We use their common 27-year period 1983-2010. Here we assess 
the skill of retrospective forecasts (or re-forecasts) of the FWI system components considering 
lead-times of 1, 2 and 3 months with regard to a predefined fire season, established from June 
to September (JJAS). Here, the lead time refers to the period of time between the issue time of 
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the forecast and the beginning of the forecast validity period, as defined by the Standardised 
Verification System for Long Range Forecasts of the World Meteorological Organisation (WMO, 
2000). Thus, a seasonal forecast issued one month before the beginning of the validity period is 
said to be of one month lead time. 
 

In addition, the model predictions of the previous month (May) were also used to calculate the 
FWI component series, in order to have a spin-up period for the stabilization of the different FWI 
System components, and then removed for the analysis. Further details regarding the target 
season rationale and the methodology for FWY System calculation are provided in Bedia et al. 
2018. 
 

Reference observations 

 

The WFDEI dataset (Weedon et al. 2011; 2014) consists of eight meteorological variables at 3-
hourly time steps and as daily averages, for the global land surface at 0.5º resolution for the 
period 1979-2012. The information provided by the WFDEI dataset is essentially that of ERA-
Interim, but providing an already available spatial resolution better suited for regional studies. 
Unlike other reference observational datasets considered in INDECIS (e.g. E-OBS), we have 
chosen WFDEI due to the availability of all the variables required for FWI calculation.  
 

Data calibration 
 

The systematic errors of current general circulation models (GCMs) used for seasonal 
forecasting and their relatively coarse spatial resolution, prevent the direct application of their 
outputs in most vulnerability and impact assessment studies, thus requiring some form of 
processing prior to their use (see, e.g., Doblas-Reyes et al. 2013, Manzanas et al. 2017). There 
is a wide range of statistical techniques currently available aimed at reducing the model biases, 
that can be roughly classified into two main families, namely bias adjustment (BA) and 
ensemble recalibration (RC) methods (see Manzanas et al. 2019 for a discussion on this 
aspect). 
 

Acting directly on the variable of interest, these techniques are aimed at adjusting the model 
outputs towards the corresponding observed reference to make them statistically compatible 
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with the local climatology, typically by mapping the predicted distribution onto the corresponding 
observed one based on a representative historical period. Adjustments can be done to the 
mean and/or variance or higher order moments or even the entire distribution (e.g., quantile-
mapping). In this work, we use the Mean and Variance Adjustment (MVA) method (Leung et al. 
1999). The ensemble mean and variance are adjusted towards 
the corresponding observed ones in the following form: 
 

 
 

Where ym,t and y’m,t denote the original and calibrated values for the ensemble member m at 
time t, yis the average of the ensemble mean on all times t, ois the average of the observations 
on all times t, fis the standard deviation of the complete ensemble (pooling all member 
interannual time-series) and ois the standard deviation of the observed interannual time-series. 
 

Even though MVA is a relatively simple approach, it has been recently shown that it provides an 
overall good performance when compared against more demanding approaches (such as 
ensemble recalibration techniques, which rely on the underlying correlation between the 
ensemble mean and the corresponding observations), with a low computational demand 
(Manzanas et al. 2019). 
 

Data sources and analysis tools 
 

All seasonal forecast and observational data have been obtained from the Santander 
Meteorology Group User Data Gateway, formed upon different open-source software 
components publicly available: The UNIDATA THREDDS data server, the THREDDS Access 
Portal implementing fine-grained user management and authorization, and the climate4R R-
based framework providing data access and postprocessing tools (including bias adjustment, 
downscaling and visualization) based on the R language and computing environment. Further 
details on the seasonal forecast database availability and configuration, including worked 
examples and reproducible code are available in Cofiño et al. 2018 (see also Frías et al. 2018 
for an overview of seasonal forecast verification tools). 
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In order to undertake the different tasks dealing with seasonal forecast data in the framework of 
INDECIS, we have used the Santander Meteorology Group User Data Gateway (UDG) as the 
main entry point providing harmonized data access to state-of-the-art seasonal forecast 
datasets. A description of the UDG infrastructure, focused in the retrieval and analysis of 
seasonal forecast data for impact studies is provided in Cofiño et al. 2018. Furthermore, data 
post-processing and analysis, including downscaling/bias correction and visualization (Frías et 
al. 2018) will be done using the climate4R suite of tools (Iturbide et al. 2018), seamlessly 
integrated with the UDG infrastructure. The ensemble forecast data calibration has been 
undertaken with the climate4R package downscaleR (Bedia et al. 2019). This provides a 
comprehensive framework for end-to-end applications of seasonal predictions in the context of 
impact studies, including those involving sector-specific indices like fire danger (see Bedia et al. 
2018). 
 

All the skill maps presented are computed at the 0.5 degree resolution of the WFDEI dataset, 
inherited in the process of MVA correction. 

Results 
For brevity, in the following panels the results for just 4 of the 7 components of the Fire Weather 
Index System will be displayed, namely the drought code (DC), the duff moisture code (DMC), 
the fine fuel moisture code (FFMC) and the fire weather index (FWI). As a reference, in Fig. 2 
the observed climatologies of the 4 components are displayed. Overall, the spatial pattern 
indicates the higher values over the southern part of Europe, as expected. 
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Figure 2. Climatological maps of the DC, DMC, FFMC and FWI components of the Fire 
Weather Index System, according to the WFDEI observational gridded observations. The period 
represented is JJAS 1983-2010. 

Model Biases 
 

In general, the CFSv2 forecasting system exhibits much higher bias magnitude than Sys4 for 
most of the study area, although the spatial pattern of errors is heterogeneous across the study 
area (Fig. 3). For some indices, such as DC in southern Europe or FFMC in Atlantic Europe, the 
bias is even of the opposite sign depending on the forecasting system. In any case, the large 
errors found warn about the need for correction prior to their application in an operational 
context, or in order to establish a comparison between both systems on common grounds. For 
brevity, relative biases have been omitted here, but are presented in the Appendix (Fig. A2).  
After the application of the MVA calibration, all biases were eliminated (see Fig. A3 in the 
appendix). Furthermore, the biases from the remaining FWI components not shown here are 
depicted in Fig. A2. 
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Therefore, all the validation results presented in the following sections correspond to MVA-
corrected predictions (i.e., after bias adjustment). 
 

 
Figure 3. Bias of the selected components of the Fire Weather Index system (arithmetic 
difference between the observed and ensemble mean climatologies). 
 

Ensemble correlation 
 

The overall agreement between predictions and observations largely varies across regions, 
forecasting systems and FWI components, although overall the larger positive correlations are 
found in southern Europe and the Middle East portion within the study area. Both Sys4 and 
CFSv2 yield high correlations (above 0.5 and up to 0.85 at some locations) for DC and DMC in 
the middle east. More interestingly, a high correlation is also found in the southern Iberian 
Peninsula for Drought Code for lead months 1 and, to a lesser extent, lead month 2. In this 
particular subregion, CFSv2 outperforms Sys4 in the prediction of DMC and FFMC for lead 
month 1 predictions. 
 

When looking at ensemble correlation, there is not a clear added value in the use of the different 
FWI components that FWI itself. Notably, CFSv2 yields slightly higher correlations in the Iberian 
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Peninsula for FFMC and FWI, although this holds true only for lead month 1 predictions. DC 
predictions attain very high correlation values in the SE corner of the analysis domain, and also 
improves the results of the FWI predictions in the Iberian Peninsula. In the particular case of 
Sys4, the predictions of DC have also high correlations in areas of central and East Europe 
(lead times 1 and 2 months). There are also large areas of central and northern Europe where 
strong negative correlations are found. In this case, although the negative correlations can be 
interpreted as potentially useful for seasonal prediction, must be taken with caution owing to the 
implicit low quality of the models in these areas.  
 

 
Figure 4. Ensemble correlation (Pearson’s correlation coefficient) between the inter-annual 
predicted and observed fire danger predictions. 
 

ROC Skill Score 
 

Discrimination measures the ability of the forecasts to distinguish between an event and the 
corresponding non-event. Here, discrimination is quantified through the ROC Skill Score 
(ROCSS), that is directly derived from the area under the ROC (Receiver Operating 
Characteristic) curve, and it is an indicator of the quality of a forecast by describing the system’s 
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ability to discriminate correctly between the binary variable occurrence/non-occurrence of a 
certain event (Jolliffe and Stephenson, 2003). 
 

As a result of using ROC Skill Score (instead of the direct Area Under the Curve -AUC-), values 
above (below) 0 indicate that the particular calibration method improves (degrades) the raw 
model prediction. Moreover, ROC is used here for tercile-based probabilistic predictions. Thus, 
terciles are independently computed for the observations and the predictions, which implicitly 
introduces a bias adjustment in the forecasts. Thus ROCSS is bias-insensitive, hence allowing 
to analyze the difference performance of CFSv2 and Sys4 beyond the expected (by 
construction) model bias reduction.  
 

For brevity, here we show the results obtained for the upper tertile predictions (i.e., those events 
predicted as “higher than usual”), associated with particularly dangerous years. Lower tertile 
predictions are indicated in Fig. A3 in the Appendix. The skilful areas in regard with 
discrimination are indicated in the figures by the bluish colors (Fig. 5). The overall spatial pattern 
exhibited by ROCSS is more heterogeneous than for correlation, although again, the highest 
skill areas are located in the southernmost regions of the study area and the Middle East. 
 

In the case of the DC, high discrimination values are found in the central and southern Iberian 
Peninsula and the Middle East for 1-month lead time predictions in both CFSv2 and Sys4 
forecasting systems, while for lead month 2 the skill is preserved by Sys4, but no longer for 
CFSv2 predictions, whose skill decays sharply in this case. Sys4 also shows high skill in certain 
areas of Eastern Europe (North of the Black Sea) up to lead month 2, not shown by the CFSv2 
predictions. A similar pattern is shown by the DMC, with an overall lower skill values than DC. In 
regard with the FFMC, CFSv2 has high skill in Southern Iberian Peninsula, Greece, Eastern 
Europe and Turkey for lead month 1 predictions, overall exhibiting a better performance than 
Sys4. However, the skill is reduced for larger prediction horizons. 
 

Overall, 3-month ahead predictions attain low skill in all zones, with the remarkable exception of 
mean FWI over the Mediterranean Iberian Peninsula (CFSv2) and DMC, FFMC and FWI in the 
Atlantic area of France, and FWI in Turkey. 
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Figure 5. ROC Skill Score of the upper tertile predictions of DC, DMC, FFMC and FWI. 
 

Discussion and Conclusions 
 

The results highlight on the one side, the large biases of both forecasting systems, and on the 
other hand that these biases largely differ depending on the model and region considered. 
Therefore, calibration is a necessary step prior to the usage of seasonal FWI component 
predictions, due to the large errors present. As it has been shown, the MVA approach for bias 
adjustment provides an effective, yet relatively simple approach to this aim. Furthermore, the 
bias correction reinforces the signal over areas with predictability, introducing an additional 
advantage from an operational standpoint. 
 

Several FWI components can improve FWI in terms of predictability (e.g. FFMC, DC, DMC), 
although this is found only locally and for certain subcomponents. Similarly, forecast skill doesn’t 
degrade drastically for increased lead times of 2 months in many areas for some FWI 
components (i.e. DC in Southern Iberian Peninsula), suggesting potential for the application of 
FWI component forecasting at time horizons larger than 1 month in some occasions. 
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The simulations of current GCMs seem to adequately represent the soil-moisture-heat wave 
(see e.g. Hirschi et al., 2011). Given the memory associated with soil moisture storage, this is 
an important factor that could explain the predictability of above-normal DC seasons in large 
areas of the mediterranean and the Middle East (ROCSS > 0.6, Fig. 4). Previous studies show 
the relatively good skill attained by the seasonal predictions of near-surface relative humidity 
and surface air temperature (Bedia et al. 2018). With this study, we show that the prediction of 
other components of the FWI system, and in particular those tracking changes in fuel moisture, 
and therefore more directly dependent on humidity and precipitation (DC, DMC and FFMC) can 
outperform the predictability of FWI itself, helping to locally improve the skill of seasonal fire 
danger predictions. Furthermore, these components of the FWI system have been shown to be 
closely related to monthly burned areas in different countries of the the EU-Med region (Amatulli 
et al., 2013), being therefore closely related to actual wildfire occurrence, thus helping to 
anticipate potentially dangerous fire years. 
 

Therefore, the varying skill of different components over different areas and forecasting systems 
suggests the potential improvement of the fire danger predictions through the construction of 
multimodel ensembles of the different FWI components. 
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Figure A1. Same as Fig. 1 (mean bias) but for the remaining FWI system components (BUI, 
DSR and ISI). 
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Figure A2. Same as Fig. 1 in the main body of the document, but considering the relative 
biases instead of the absolute ones. In this case, relative bias is computed as the difference 
between predictions and observations, divided by the observed mean. 
 

 
Figure A3. Same as Fig. 1 after the application of the Mean-Variance Adjustment. The relative 
biases displayed in Fig A2 are removed after the bias adjustment. 
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Ensemble correlation 

 
Figure A4. Same as Fig. 3 (Ensemble correlation of bias-corrected predictions), for the 
remaining FWI components (BUI, ISI and DSR). 
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Figure A5. Same as Fig. 3 (ensemble correlation), but considering the uncorrected predictions. 
The spatial pattern is very similar to the corrected predictions, but the correlation values are 
slightly better in some areas after the correction. 
 

Summary by countries 

 

In this section a summary by countries of the ensemble correlation is presented at a country 
level (NUTS1, Fig. A4). It must be noted that the spatial pattern of forecast skill is finer than 
country-level in many countries (i.e., a more regional analysis is required for a better analysis). 
However, these panels have been prepared in order to gain a quick overview of overall skill 
across countries and its evolution through lead times from 1 to three months. 
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Figure A6. NUTS1 level aggregation of European regions. Countries are indicated by colors, as 
used for the summary correlation results displayed in Figs. A7-A9. 
 

 
Figure A7. Aggregated results of the different FWI components ensemble correlation 
considering NUTS-0 aggregation (country level, see Fig. A6 above), for  the 1 month lead time 
predictions of CFSv2 (left) and System4 (right). 
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Figure A8. Same as Fig. A7, but for  the 2 month lead time predictions. 
 

 
Figure A9. Same as Fig. A8, but for the 3 month lead time predictions. 
 
 

ROC Skill Score 
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Figure A10. Same as Fig. 4 (ROC Skill Score of the upper tertile predictions), for the remaining 
FWI components (BUI, ISI and DSR). 
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Figure A11. Same as Fig. 4 (ROC Skill Score of DC, DMC, FFMC and FWI), but considering 
the lower tertile (i.e., “below normal” fire danger) instead of the upper tertile. 
 
 


