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1. Introduction 

Homogenization of climatological data on the daily time scale is attempted through the detection of 

inhomogeneities at annual, seasonal or monthly means level, and then adjusting the corresponding daily 

values through various techniques (e.g. Aguilar et al., 2003; Trewin, 2010; Vincent et al., 2017). The 

detection of break points, where an inhomogeneity takes place (e.g. an instrument is replaced, an 

extraction method is changed, a ground station is moved), is of major importance in this process 

(Kuglitsch et al., 2012). However, the adjustment of inhomogeneous data (some segments of raw time 

series) to homogeneous state is also very important since both parts of the homogenization procedure 

might produce a certain number of common errors, which deviate the homogenized data from the true 

climate signal. 

By performing a homogenization, one aims to remove the detected inhomogeneities (abrupt 

shifts/jumps, gradual trends, outliers etc.) and approximate the data to the real climate signal, that took 

place in some area. Usually the homogenization procedure allows to improve the consistency of the 

data, which can be seen in the process of a statistical comparison of the raw and homogenized time 

series. However, the question that may remain unclear is: how far are the homogenized data from the 

true climate signal? Or, in other words, what potential uncertainties could still be present in the data 

homogenized by means of some homogenization algorithm or software? It is a very important yet 

largely overlooked issue, because the climate signal (clean data) is essentially unknown and it is 

impossible to conduct a direct quantitative comparison and evaluation of the homogenization results. At 

the same time, understanding the uncertainties and their causes is vital for the correct interpretation of 

outputs of any predicting model, including homogenization software. 

It is important to note that in spite of intuitively clear meaning of the term ‘uncertainty’, which can be 

simply interpreted as a range or a distribution of possible residual errors, there is no unique 

methodology how it can be quantified for the homogenization (detection and/or adjustment) of climate 

data (Lindau and Venema, 2016; Trevin, 2018; Vincent et al., 2018). 

 

2. INDECIS benchmark data sets 

In the scope of the INDECIS project (www.indecis.eu), two different collections of benchmark time series 

were created (Aguilar et al., 2018), which cover two regions in Europe with different climate, namely 

southern Sweden and Slovenia (Figure 1). Each collection contains the daily series of nine essential 

climate variables (cloud cover, wind speed, relative humidity, sea level pressure, precipitation amount, 

snow depth, sunshine duration, maximum and minimum air temperature) over the period of 1950-2005. 

Each benchmark data set consists of clean data, extracted from the output of the Royal Netherlands 

Meteorological Institute (KNMI) Regional Atmospheric Climate Model (RACMO) version 2, driven by 

Hadley Global Environment Model 2 - Earth System (MOHC-HadGEM2-ES) (Collins et al., 2008), and 

inhomogeneous data, created by introducing realistic breaks and errors. Missing values and other 

quality problems (different from biases) were also added to generate other flavors of the perturbed 
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benchmarks. The RACMO model was chosen due to its high spatial resolution (0.11o×0.11o) and the daily 

time step of the output provided: gridded time series of essential climate variables. 

 
Figure 1. Two European domains, Southern Sweden (left panel) and Slovenia (right panel), with chosen 

subsets of the Regional climate model grid points (shown as blue dots) to imitate ground station spatial 

distribution. 

The benchmark data set for southern Sweden contain 100 ‘stations’, a subset of the RACMO grid points 

chosen to imitate stations spatial distribution, while only 30 ‘stations’ were selected in the Slovenia 

domain. Their geographical locations are shown in Figure 1. 

The introduction of biases (break points) in the homogeneous series was done by simulating relocations. 

First, the closest pairs of the RACMO grid time series were used to build a database of differences (or 

ratios, depending on the variable) between nearby locations. Then, for every random sub-period to 

perturb in the homogeneous series, a difference (or a ratio) was randomly chosen, modified by a 

random factor to enhance the lower variability of modeled series, and applied to bias the sub-period. 

As an example, Figures 2–5 show in the graphical form statistical properties of station signals introduced 

into minimum (TN) and maximum (TX) air temperature clean time series from the southern Sweden 

domain. Figure 2 represents the time distribution of the break points. Figure 3 shows the distribution of 

the number of stations/time series with respect to the number of breaks in one time series. Figure 4 

contains the histograms of the factors and amplitudes (defined here according to the HOMER notations) 

of jumps in the break points. Beside the factors and amplitudes, the homogeneous segments in the 

introduced errors time series (station signals) can also be characterized by standard deviations (SD) of 

errors. Figure 5 shows their histograms. 
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The statistical properties of the break points and respective homogeneous segments in the introduced 

station signals are close to reality. Such conclusion is supported by many homogenization results of real 

data sets where similar statistical features of inhomogeneities have been found (e.g. Brunet et al., 2008; 

Trewin, 2018). 

 
Figure 2. Number of break points per year introduced to clean (a) TN and (b) TX air temperature time 

series. The southern Sweden domain. 

 
Figure 3. Distribution of the number of stations/time series with respect to the number of break points 

in one time series: (a) TN, (b) TX. The southern Sweden domain. 
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Figure 4. Histograms of the factors (a, b) and amplitudes (c, d) of the shifts at break points, that were 

introduced to TN (a, c) and TX (b, d) clean data sets. The frequency/count was normalized by the total 

number of the breaks. The factors/amplitudes were estimated by averaging homogeneous segments in 

the time series of the introduced error. The southern Sweden domain. 

 
Figure 5. Histograms of SDs of the introduced errors at the homogeneous segments: (a) TN, (b) TX. The 

frequency/count was normalized by the total number of the breaks. The southern Sweden domain. 
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3. Homogenization software analyzed 

4.1. Climatol 

The R package Climatol (Guijarro, 2018; http://climatol.eu/) is a homogenization software that has been 

selected as the main homogenization tool in the INDECIS project. The effectiveness of the software has 

been evaluated in several benchmark tests where it demonstrated good results, which are comparable 

in terms of accuracy to other well established and tested homogenization algorithms. One of Climatol’s 

key feature characteristics is that it can be used automatically, which significantly increases its 

applicability to large data sets such as the European Climate Assessment and Dataset (ECA&D) (Klein 

Tank et al., 2002). Several versions of the software have been released since its creation. In the scope of 

the INDECIS project, Climatol 3.1.1. is being used, available through CRAN (https://cran.r-

project.org/package=climatol). 

The Climatol detection method (Guijarro, 2018) is based on the standard normal homogeneity test 

(SNHT) (Alexandersson, 1986). For any candidate time series, Climatol uses data from neighboring 

stations to create a single composite reference series as their optionally weighted average. This 

composite series is used further to create time series of anomalies (in order to detect breaks) and to 

estimate all missing data and all sub-periods/segments after break point detected. From the statistical 

point of view, the approach employed in the estimation process is equivalent to applying a type II linear 

regression model. 

4.2. HOMER 

The HOMER (HOMogenization software in R) software package (Mestre et al., 2013) was developed 

under the umbrella of the COST Action ES0601 and integrates the parts of different homogenization 

algorithms such as PRODIGE (Caussinus and Mestre, 2004), ACMANT (Domonkos, 2011) and Climatol 

(Guijarro, 2018), which were tested and validated via benchmarking (Venema et al., 2012). HOMER is 

applied to monthly time series, usually through an interactive procedure. 

In order to detect potential break points, HOMER uses three different approaches: (i) pairwise 

comparison, (ii) joint segmentation, (iii) bivariate detection on annual and seasonal changes. In the 

interactive mode, however, the final decision regarding breaks are made by software users. The 

correction of detected inhomogeneities are performed by means of ANOVA two factors model. 

4.3. HOMER (SMHI version) 

Due to the interactive nature of the HOMER software, its application is time consuming and quite 

limited to relatively small datasets. The homogenization with HOMER of temperature observations at 

SMHI has previously been performed with a set of criteria for the confirmation of a suggested 

homogeneity break (Joelsson et al., 2020). These criteria have been implemented in the HOMER 

(interactive mode) source code by assigning the break signals from the methods different weights and 

applying a threshold for the sum of the weighted break signals each year for the confirmation of a break 

year. The user can choose to adjust these threshold and weights to fit their needs. All user interactions 
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are removed to enable batch processing. This automatic mode of HOMER will be indicated in the Report 

as SMHI-HOMER from now on. 

4.4. ACMANT 

The ACMANT (Adapted Caussinus-Mestre algorithm for networks of temperature series) 

homogenization software (Domonkos, 2011), as it follows from its full name, is a further development of 

the Caussinus-Mestre method (Caussinus and Mestre, 2004). ACMANT treats in a special way the 

seasonal changes of inhomogeneity sizes in temperature time series and applies a bivariate test for 

searching the timings of breaks. The two variables are the annual mean temperature and the amplitude 

of seasonal temperature-cycle. 

 

4. Methodology of the uncertainty quantification and performance evaluation for 

homogenization software 

As it was mentioned above, unfortunately there is no commonly used methodology for uncertainty 

quantification of homogenization procedures. Besides, it is worth noting that the performance 

evaluation of a homogenization algorithm and the quantification of its uncertainty are slightly different 

tasks in several aspects. 

Let 

, , and                                                                     (1) 

be inhomogeneous, homogenized, and clean daily data, respectively.  and  can be also referred to 

as raw and homogeneous data, correspondingly. All these data sets are collections of time series 

,  ,  ,                                         (2) 

where  is the number of meteorological stations considered and  is the number of time steps/days 

(or months). From the mathematical point of view,  is a rectangular matrix with dimension of 

. Let , which is the k-th row in (2), denote the entire time series for the k-th station. The 

homogenization can be formally thought as mapping g that transform the input matrix  in to the 

output one  

.                                                                       (3) 

 is the reference, etalon result for the outputs. 

Based on the data available in (1), time series of real, , detected, , and homogenization, , 

errors can be calculated:  

,  ,  .                             (4) 

Specifically in the considered case,  is a collection of station signals (or, more precisely, station signals 

plus noise; but for simplicity they will be referred further as station signals) that were introduced into 
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the clean data .  is a dataset of residual errors that might be still present in the homogenized 

series . The error datasets ,  and  are also -matrices: , , 

. 

Figure 6 shows some typical examples of the time series associated with the same (k-th) station. They 

were extracted from the TN raw, homogenized by means of the Climatol software, and clean data sets 

(the southern Sweden domain). Figure 7 shows the corresponding error time series (4), calculated from 

the data given in Figure 6. All figures can be also interpreted as graphical representations of the k-th 

rows in the respective matrices. 

 
Figure 6. Examples of TN time series (the southern Sweden domain) belonging to the same (k-th) station 

extracted from the inhomogeneious  (a), homogenized  (b) and clean  (c) data sets 

The main object of the uncertainty quantification study is the matrix : it is necessary to define how 

large the residual errors in the adjusted data could be or, in other words, how large the departure of the 

adjustment prediction  from the reference result  could be. According to e.g. Walker et al. (2003), 

such departure is usually called ‘uncertainty’. Typically, there exist multiple reasons, referred to as 

sources of the uncertainty, which may affect the homogenization performance and magnitude of the 

errors in . Therefore, in order to evaluate the uncertainty of the homogenization, all these sources - 
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the whole credible range of every uncertain input and parameter of the homogenization software – 

must be considered and the effective width of the corresponding probability distribution of the residual 

errors should be defined (Domonkos and Efthymiadis, 2013). The wider the error distribution, the more 

uncertain the software prediction  is. 

 
Figure 7. Examples of time series of errors: real/introduced  (a), detected  (b) and 

residual/homogenization  (c) calculated from the data presented in Figure 6 

The residual errors of the homogenization  should depend on the introduced errors . The more 

complex station signals in  (e.g. the larger number of break points, the higher amplitudes of shifts, 

etc.), the larger residual errors should be expected. Thus, to clarify how wide the distribution of the 

potential remaining errors could be, a large number of different yet real variants of  has to be 

considered. Performing the homogenization adjustment for each of them provides a respective 

ensemble of a homogenization software’s outputs, necessary for the uncertainty quantification. The 

result of the homogenization should also depend on other factors, such as the mean correlation 

between candidate and reference time series (e.g. Guijarro, 2011), number of reference series (e.g. 

Trewin, 2018) etc. 
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4.1. The concept of a random field/function applied to the residual errors 

The considerations presented above suggest an appropriate theoretical model for  that can provide a 

basis for further calculations and can make calculation results more solid, both statistically and 

theoretically. Since it is necessary to consider an ensemble of different realizations of , it is natural to 

assume that  is a random field or, more generally, a random function, that is given at the limited 

number ( ) of discrete points in space and time domains, D and T, respectively. Therefore, in 

order to evaluate the homogenization and to quantify the homogenization uncertainty it is necessary to 

define and study statistical properties of the random field . According to the theory, a 

multidimensional (  -dimensional) probability distribution function 

                                      (5) 

provides the most detailed and complete description of . Based on  it is possible to derive 

multidimensional probability distribution of the residual errors in any of  meteorological stations. For 

instance, for k-th station the function  can be obtained by integrating  with 

respect to all its arguments except . Function  defines probability distribution of 

the residual error in k-th meteorological station ( ) and l-th day ( ). 

In the most general case, a random field might be non-stationary in time and heterogeneous in space. In 

this situation, the simplest statistical properties of the random field defined in a single point of the 

space-time domain, such as the mean or standard deviation, vary in the domain. On the contrary, when 

the field is stationary and homogeneous, these statistical moments are constant in time and space. 

Specifically to the homogenization procedure, it can be expected that  is non-stationary (e.g. due to 

seasonal cycle in temperature time series) and heterogeneous (e.g. due to possible different topography 

in D and, as a result, different local correlation between temperature time series). Such peculiarities of 

, namely non-stationarity and spatial heterogeneity, make its analysis more difficult. In particular, 

that means that the ergodic assumption cannot be used in order to calculate statistical properties of  

based on its only realization. 

Let ,  be  different but real variants of the collection of the introduced station signals. 

Let also assume that the same number of numerical experiments, the homogenization calculations, 

were performed and corresponding number of realizations of  were obtained using a chain of the 

calculations 

,  ,  ,                        (6) 

Based on these realizations, it is theoretically possible to evaluate . However, such task is hardly 

feasible in practice due to the extremely large number of dimensions to be considered. On the other 

hand, based on the statistical ensemble of  individual realizations of  some of the moments of the 

residual error distribution (5) can be evaluated. In the context of the homogenization uncertainty 

quantification, the most important of them are a mean value ( ) and some parameter that can 
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characterize a width of the distribution such as the standard deviation ( ) or the percentile range. The 

mean value provides information regarding the systematic bias of the homogenization, while the 

standard deviation or the percentile range characterize its uncertainty. Both statistics,  and , can 

vary in the space-time domain where  is defined and they can be evaluated using the following 

formulas 

,                                                                 (7.1) 

,                                                 (7.2) 

,  . 

While the proposed approach to the evaluation of the homogenization uncertainty on the daily time 

scale appears attractive and theoretically rigorous, it can potentially lead to some problems that may 

limit its practical applicability. For instance, one of the limitations can be related to difficulties with 

constructing a statistical ensemble for  with a sufficient number of its individual realizations in order 

to perform the calculations according to (6). Another example of possible limitations can be explained as 

follow: typically, at the end of the time domain T, all station signals in  contain undisturbed segments 

(see, for example, Figure 7a). Hence, a lot of zero values in  are usually obtained there. Such zero 

values have to be excluded from the analysis when evaluating the homogenization uncertainty since 

they do not mean the ‘perfect’ homogenization. However, it is not very easy to do so, because individual 

station signals usually have undisturbed segments of different length. 

4.2. Verification/validation statistical metrics 

Estimating the statistical properties of the random field of the residual error  is not the only way to 

evaluate the performance of the homogenization and to quantify its uncertainty on the daily or monthly 

time resolution. An alternative approach is to use specially elaborated statistical metrics or indicators 

(e.g. Vincent et al., 2018; Trewin, 2018). As noted in Coll et al. (2020), such metrics can provide useful 

indications in relation to the strengths and weaknesses of homogenization methods used. 

As it was mentioned above, the performance evaluation of a homogenization algorithm and the 

quantification of its uncertainty are slightly different tasks in several aspects. For instance, we can 

evaluate the performance even if there is only a single realization of the adjustment output . 

Whereas to define the uncertainty we normally should have a statistical ensemble of  

( , ) and the corresponding ensemble of  ( , ). As it was already 

mentioned, a single realization of  can be used for the uncertainty quantification only if  satisfies 

special conditions. The evaluation is usually performed by means of some metrics or statistical 

indicators. The metrics are computed for each individual station in the data set based on error data  

( ) or on comparison of the corresponding pair of time series  and . Calculated for a 

single output of the homogenization adjustment , they yield general (averaged in time) estimates of 
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the systematic and random residual errors in this actual software run. The metrics values can be 

averaged over all stations, providing overall (for the whole space domain) evaluation. Some of these 

averaged metrics, however, can also be used to quantify the homogenization uncertainty. 

Figure 8a shows a graphical comparison between the homogenized  and clean  time series, 

presented in Figure 6 b and c. A similar plot for inhomogeneous  and clean  data (Figure 6 a and c) 

is presented in Figure 8b for comparison. The solid bisecting line of black color, usually referred to as the 

line of true predictions, shows full agreement between respective time series. The perfect/ideal 

homogenization algorithm would yield corrected values, which are exactly the same as the 

corresponding clean data. In this case, all dots depicting all pairs ( ),  would lie on 

the line of true predictions. The dots lying below the black line mean underestimation of the 

homogenization algorithm, while the dots above it show overestimation. Other lines in the diagrams are 

explained later. The figures are used below for further explanations. 

 
Figure 8. Example of scatter diagrams. Homogenized  (a) and raw  (b) daily data are built against 

respective clean values  presented in Figure 6 

The discrepancy between the homogenized and clean time series (Figure 8a) is obviously reduced 

compared to the discrepancy between the inhomogeneous and clean data (Figure 8b). The residual 

disagreement in Figure 8a might be quantified by means of some statistical metrics. Due to the random 

nature of  and , it is evident, that several metrics should be used because no single one can 

provide complete information regarding the residual errors of both types, systematic and random. 

Eight different metrics were applied in the report: the bias ( ), the absolute bias ( ), root mean 

square error ( ), factor of exceedance ( ), percentage of days within ±0.5/±2 oC margin 
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( / ), Pearson’s correlation coefficient ( ) and difference in slopes ( ). The use of 

metrics ,  and  is intended for estimating the systematic errors, while the other four, 

,  and / , are used for evaluation of the random or scatter residual errors. In 

the context of the uncertainty evaluation, the two most important metric are  and , which 

averaged values can also provide information regarding the overall deviation of the homogenization 

prediction from the true climate signal and the range of the possible residual errors, respectively. 

Formulas for most of the metrics are standard and well known. However, they were included in the 

report for completeness. Note that all formulas are presented for individual pairs of time series,  and 

, . Obviously, similar metrics can be calculated for inhomogeneous data by replacing  

with  (in case of no missing values in the raw data). 

1) Bias 

,                                               (8) 

where  is a number of pairs  in corresponding time series. Depending on its sign it shows 

average overestimation (+) or underestimation (-) of the homogenized data. However, the bias does not 

provide any information whether overestimations are more frequent than underestimations or vice-

versa. The ‘perfect’ homogenization algorithm would give 0 for this metric, while  does not mean 

that all differences ,  are zeros. In other words,  is a necessary, but 

not sufficient, condition for having a perfect model or algorithm. In the case when a statistical ensemble 

of  individual realizations of the adjustment outputs is available,  can be averaged over this 

statistical ensemble. By comparing (7.1) and (8) it becomes clear that such averaged value can be 

considered an estimate of the mean of the random field  for -th station. 

2) Absolute bias 

.                                       (9) 

Absolute bias is used to provide an effective measure of the difference between the validated series and 

the validation set. In this case,  is a necessary and sufficient condition for having a perfect 

model or algorithm. However, there is no information regarding the average sign of the difference 

(overestimation/underestimation). 

3) Root mean squared error 

.                            (10) 

 provides information about the average deviation of the homogenized data from the true 

climate signal. However, this metric can be also interpreted as a value that is proportional to the 

Euclidian distance between  and  in a multidimensional space. Consequently, such an 

interpretation provides qualitative explanation why , averaged over the statistical ensemble of  
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model runs, can characterize the width of possible residual error distribution for the -th station and, 

hence, can be used to characterize the homogenization adjustment uncertainty. Comparing (7.2) and 

(10), it can be concluded that such averaged value should be close to the standard deviation of the 

random field  for the -th station. 

4) Factor of exceedance 

,                                                (11) 

where  is a number of pairs  when , i.e. a homogenized value is 

overestimated in comparison with the respective value from a clean time series. The factor of 

exceedance is measured in % and its values range from -50% to 50%. For instance,  

means that all homogenized data are overestimated with respect to the true climate data. This measure 

is widely used in climate analysis and applied meteorology. 

5-6) Percentage of days within ±0.5/±2 oC margin. In addition to the line of true values in Figure 8, other 

reference lines might be shown on a scatter diagram in order to facilitate the qualitative evaluation of a 

homogenization performance. For instance, pairs of parallels can be drawn that are defined as 

,                                                              (12) 

where  denotes an absolute value,  is a certain threshold of temperature differences,  and  

denote here just dependent and independent variables shown in Figure 8a. Following Vincent et al. 

(2018), the thresholds of 0.5oC can be used or 2oC by analogy with the factor of 2 used in other fields of 

applied meteorology. A pair of such reference lines when oC are shown in red color in Figure 8. 

Now metrics  and  can be simply explained as percentage of dots , which lie in 

the area between respective reference lines (12). That is, 

 and ,                     (13) 

where  and  stand for the numbers of dots , which lie in the areas 

inside respective lines (12). Such metrics characterize the magnitude of the scatter of the adjusted 

values around the clean data. 

7) Pearson’s correlation coefficient 

                                                              (14) 

where  and  are calculated as  

  and  . 

Pearson’s correlation coefficient is a measure of the linear relationship between two variables or 

datasets.  can vary from -1 (perfect anticorrelation or negative correlation) and +1 (perfect 
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correlation or positive correlation), while 0 means there is no correlation at all. In a case of 

homogenization evaluation, the best result is the perfect positive correlation between  and , i.e. 

. In literature, generally values from 0.4 to 0.6 are said to yield weak correlation, values from 

0.6 to 0.8 to yield moderate correlation, and values above 0.8 to yield strong correlation. 

8) Difference in slopes 

,                                                                (15) 

where  is the slope of a linear regression model , which is built using the standard 

least-squares approach. The need to introduce such metric can be explained based on Figure 8a. As can 

be seen from this figure, neither  nor  can clearly capture the tendency of general simultaneous 

underestimation of positive temperatures and overestimation of negative ones (the opposite situation is 

also possible). The absolute values of the under/over-estimations depend on the temperature 

magnitude, and they are the largest for temperature extreme. In other words, the under/over-

estimation should be reflected in the underestimation of the amplitude of the seasonal cycle showing 

less variability of the homogenized/adjusted temperature values. Such type of discrepancies (systematic 

error) between homogenized and clean data can be evaluated based on comparison of slopes of the 

true value line, which always equals to 1, and the linear regression built on the data (blue line in Figure 

8). The metric is important when evaluating the adjustment of the daily data, since the under/over-

estimation of values from tails of the temperature distribution can affect the calculations of some 

climate extremes indices. The best value for  is 0. It is worth noting that a similar approach was 

used in (Della-Marta and Wanner, 2006), where a comparison of the candidate and reference series by 

means of a scatter diagram was part of the proposed adjustment method. According to that work, 

deviation of the slope of a line that fits the data from 1 indicates that daily temperatures at the 

candidate are less/more variable than those at the reference. 

The set of the introduced metrics is capable of providing a fairly detailed description of the 

homogenization performance on the daily or monthly time resolution. 

 

5. Results 

5.1. Verification of the homogenization software on the monthly scale 

The main questions considered in this section were the following: (i) what metrics can be meaningfully 

used to validate the best-performing homogenization technique for a temperature record in a region? 

(ii) does temperature homogenization techniques’ performance depend on physical features of a station 

like its geographical position, i.e., latitude, altitude, distance from the sea? (iii) does temperature 

homogenization techniques’ performance depend on the nature of the inhomogeneities, i.e., the 

number of break points and missing data? 
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In order to clarify the stated questions monthly time series of TN and TX have been calculated from the 

raw data for both domains (see Figure 1). Then the homogenized monthly data have been obtained 

through three homogenization techniques: ACMANT, and two versions of HOMER: the standard one and 

the manual mode setup performed by partners at the Swedish Meteorological and Hydrological 

Institute, SMHI (SMHI-HOMER). Metrics used for the evaluation of the homogenization techniques are 

bias, absolute bias, root mean square error, Pearson correlation and factor of exceedance. The metrics 

have been calculated for each pair of homogenized-clean time series for both domains separately and 

then averaged over the corresponding number of stations (100 for southern Sweden and 30 for 

Slovenia). The same metrics were also applied to study the differences and errors between the 

inhomogeneous (raw) datasets and the clean data. In this way, it was possible to evaluate quantitatively 

the improvements obtained by the use of homogenization techniques. Tables 1 and 2 show the results 

of the regional mean metrics calculated for the corrupted dataset and the three homogenized datasets, 

for southern Sweden and Slovenia respectively. 

Table 1: 100-station average of five metrics of corrupted dataset and homogenization techniques for the 
southern Sweden compared to the clean data. 

SOUTHERN SWEDEN (100 stations) 

Metric Variable Corrupted 
Standard 

HOMER 

SMHI-

HOMER 
ACMANT 

CC 
TX 0.9959 0.9979 0.9979 0.9981 

TN 0.9908 0.9959 0.9959 0.9966 

RMSE (oC) 
TX 0.7094 0.4986 0.5082 0.4570 

TN 0.8908 0.6049 0.6059 0.5351 

B (oC) 
TX -0.0286 -0.0344 -0.0399 -0.0095 

TN -0.0434 0.0047 -0.0341 -0.0089 

Babs (oC) 
TX 0.3797 0.3053 0.3112 0.2490 

TN 0.4786 0.3581 0.3577 0.2833 

FOEX (%) 
TX -28.3854 -21.4211 -22.1607 -23.1310 

TN -28.9896 -19.5327 -22.6176 -23.8854 

Table 2: 30-station average of five metrics of corrupted dataset and homogenization techniques for Slovenia 
compared to the clean data. 

SLOVENIA (30 stations) 

Metric Variable Corrupted 
Standard 

HOMER 

SMHI-

HOMER 
ACMANT 

CC 
TX 0.9730 0.9951 0.9955 0.9953 

TN 0.9856 0.9930 0.9938 0.9942 

RMSE (oC) 
TX 2.1440 0.8040 0.7876 0.7673 

TN 1.3062 0.8743 0.8316 0.7584 

B (oC) 
TX 0.1370 0.1462 0.0125 0.0210 

TN 0.0927 0.0526 0.0168 -0.0315 

Babs (oC) 
TX 1.3452 0.4944 0.4832 0.4190 

TN 0.6656 0.4816 0.4818 0.3732 

FOEX (%) 
TX -21.3442 -7.3512 -13.9831 -20.3175 

TN -29.3552 -19.6875 -20.0992 -28.3829 
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It is clear from the metrics results that homogenization improves the correspondence of the dataset to 

the real data on all accounts except for the bias. RMSE, Babs and FOEX all allow to evaluate quantitatively 

meaningful improvements in the homogenized datasets. For instance, for maximum temperature, mean 

RMSE in Sweden is reduced from 0.71oC (corrupted dataset) to 0.50oC (standard HOMER), 0.51oC (SMHI-

HOMER) and 0.46oC (ACMANT); for minimum temperature, mean RMSE was reduced from 0.9 to 0.6 

(oC), 0.61 and 0.53 (oC) respectively. In both cases, there was an improvement of about 30% with respect 

to the corrupted dataset. In Slovenia, improvements are even bigger in absolute terms, as the Slovenian 

corrupted dataset has much worse RMSE to start with: RMSE is 2.1oC for maximum temperature and 

1.31oC for minimum temperature, while the homogenized RMSEs are respectively 0.8 and 0.87 

(standard HOMER), 0.79 and 0.83 (SMHI-HOMER), 0.77 and 0.76 (ACMANT) (all in oC). 

However, the Pearson correlation coefficient didn’t improve much in either region or for either variable. 

The reason for this is that, even though artificially manipulated, the corrupted data still show a very high 

linear correlation with the real one, as is expected in the case of inhomogeneities to the instrumental 

sensitivity or the re-positioning of an instrument that are simulated by the introduction of artificial break 

points. Even the weakest correlation between corrupted data and original data, i.e., 0.9730 in Slovenia 

for maximum temperature, is so high that differences between it and the perfect correlation 1 are not 

significant. On the other hand, it is important to point out that homogenization always improves even 

this parameter. 

For what concerns to the bias, it is true that homogenization not always improves this metric: for 

example, the southern Swedish maximum temperature corrupted dataset has a mean bias of -0.0286oC, 

while standard HOMER’s bias is -0.0344oC and SMHI-HOMER’s -0.0399oC. However, taking into account 

both the bias and the absolute bias (which shows reductions from 0.38 to 0.30 and 0.31 (oC) 

respectively), it is clear that the biases in the maximum temperature cancel out and the value goes 

towards zero, but this masks the true signal of the error. Validating the techniques through the bias, 

thus, can be used to assess if homogenization changes the sign of the bias, but it is not really suggested 

as a way to assess quantitatively whether there are improvements in the quality of the data. 

According to the results, ACMANT is the best performer with regard to Pearson correlation, RMSE and 

absolute bias for both regions and both variables; in these instances, the two HOMER techniques are 

almost equivalent, with very small differences for each of these metrics. For what regards the factor of 

exceedance, the two HOMER techniques perform best, with standard HOMER being slightly the better 

one (TX Sweden: -21.4% vs -22.2%; TN Sweden: -19.5% vs -22.6%; TX Slovenia: -7.3% vs -14.0%; TN 

Slovenia -19.7% vs -20.1%). 

Comparing results in southern Sweden and Slovenia, it is also clear that the homogenization produces 

different outcomes depending on the variable and on the region. For example, while in Sweden the 

factor of exceedance goes from the corrupted dataset FOEX=-28.4% for TX and FOEX=-29.0% for TN to 

the homogenized values -21.4% and -19.5% respectively (standard HOMER), in Slovenia the factor of 

exceedance of the corrupted dataset is -21.3% for TX and FOEX=-29.3% for TN and the homogenized 
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values with standard Homer are -7.3% and -19.7% respectively, so that in Slovenia the homogenization 

improves much more than in southern Sweden according to this metric. 

In order to understand the differences in performance of the homogenization techniques, the 

relationship between physical features, inhomogeneities and the performance was investigated through 

the use of Pearson’s correlation coefficients, with the goal of highlighting any possible linear correlation 

between them. 

The metrics of the stations of each regional dataset have been compared to two different types of 

variables: (i) physical features of the stations ((a) latitude, (b) distance from the sea, (c) altitude (a.s.l.)); 

(ii) features of the corrupted station data ((a) the number of breaks introduced and (b) the introduction 

of missing data). It must be noted, though, that distance from the sea and altitude data were available 

only for the Swedish stations, so there was no analysis on these points on Slovenian stations. 

5.1.1. Latitude 

No relevant correlation was found between the latitude of the stations and the five metrics for TX in 

Sweden. There is a huge difference in the values of the five metrics for each station belonging to the two 

regional sets.  

There is some significant correlation for TN in the Pearson correlation metrics; however, that was 

established to be the least interesting metric, as the Pearson correlation coefficient didn’t improve 

much in either region or for either variable (see above). The weak correlations of the Bias metric (B) with 

latitude are also not relevant, considering the diminished role of the B metric determined in the analysis 

above. 

For what regards Slovenia, the only relevant results seem to be those for RMSE in Standard HOMER, 

where we found CC=-0.38 for TX and CC=0.37 for TN. As the difference in latitude range is much smaller 

than in Sweden, it is difficult to establish whether this is truly a standout result. 

In general, there seems to be no major discernible pattern in the correlation coefficients depending on 

variable (TX or TN) or region (southern Sweden or Slovenia). 

Table 3. Correlation coefficients between the five metrics of homogenized maximum temperature datasets and the 
station latitude, for the 100 southern Sweden stations. Boxes highlighted in grey mean the value is at least 95% 

significant. 
Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TX CC significance CC significance CC significance 

CC 0.16 0.10 0.17 0.08 0.18 0.08 

RMSE 0.04 0.72 0.09 0.38 0.01 0.93 

B -0.11 0.25 -0.16 0.12 0.05 0.61 

Babs 0.06 0.54 0.09 0.36 0.03 0.78 

FOEX 0.04 0.96 -0.07 0.48 -0.05 0.65 
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Table 4. Correlation coefficients between the five metrics of homogenized minimum temperature datasets and the 
station latitude, for the 100 southern Sweden stations. Boxes highlighted in grey mean the value is at least 95% 

significant. 
Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TN CC significance CC significance CC significance 

CC 0.32 <0.01 0.27 <0.01 0.25 0.01 

RMSE -0.12 0.23 -0.05 0.60 -0.06 0.56 

B -0.28 <0.01 -0.19 0.06 -0.20 0.04 

Babs -0.08 0.42 <0.01 0.96 <0.01 0.97 

FOEX -0.12 0.22 -0.05 0.59 -0.02 0.84 

 
Table 5. Correlation coefficients between the five metrics of homogenized maximum temperature datasets and the 

station latitude, for the 30 Slovenia stations. Boxes highlighted in grey mean the value is at least 95% significant. 

SLOVENIA Standard HOMER SMHI-HOMER ACMANT 

TX CC significance CC significance CC significance 

CC 0.45 0.01 0.24 0.21 0.35 0.06 

RMSE -0.38 0.04 -0.16 0.40 -0.28 0.13 

B -0.11 0.57 0.30 0.11 0.51 <0.01 

Babs -0.35 0.06 -0.10 0.59 -0.17 0.38 

FOEX -0.07 0.72 0.02 0.90 0.29 0.11 

 
Table 6. Correlation coefficients between the five metrics of homogenized maximum temperature datasets and the 

station latitude, for the 30 Slovenia stations. Boxes highlighted in grey mean the value is at least 95% significant. 

SLOVENIA Standard HOMER SMHI-HOMER ACMANT 

TN CC significance CC significance CC significance 

CC -0.30 0.11 -0.22 0.24 -0.11 0.56 

RMSE 0.37 0.04 0.27 0.15 0.20 0.29 

B 0.12 0.52 -0.21 0.27 -0.14 0.47 

Babs 0.32 0.08 0.21 0.26 0.12 0.54 

F 0.15 0.43 <0.01 >0.99 0.06 0.76 

 

5.1.2. Distance from the Sea 

Very weak correlations were found between the distance from the sea of the Swedish stations and the 

five metrics. Most are found in the Pearson correlation metrics, that was established to be the least 

interesting metric, as the Pearson correlation coefficient didn’t improve much in either region or for 

either variable (see above). The weak correlations of the Bias metric (B) with distance from the sea are 

also not relevant, considering the diminished role of the B metric determined in the analysis above. 

On the other hand, of more interest is the weak but significant negative correlation between Factor of 

exceedance (FOEX) and the minimum temperature in Sweden for the HOMER homogenization 

techniques. As all three methods were found to underestimate the values of the validated series, from 
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these results it seems that increasing the station distance from the sea, the number of underestimated 

data increases slightly as well. 

Table 7. Correlation coefficients between the five metrics of homogenized maximum temperature datasets and the 
station distance from the sea, for the 100 southern Sweden stations. Boxes highlighted in grey mean the value is at 

least 95% significant. 

Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TX CC significance CC significance CC significance 

CC 0.23 0.02 0.21 0.04 0.18 0.07 

RMSE -0.09 0.35 -0.05 0.63 -0.06 0.53 

B 0.09 0.37 -0.02 0.87 0.22 0.03 

Babs -0.06 0.54 -0.01 0.92 -0.02 0.85 

FOEX 0.07 0.50 0.01 0.93 0.07 0.50 

 
Table 8. Correlation coefficients between the five metrics of homogenized minimum temperature datasets and the 
station distance from the sea, for the 100 southern Sweden stations. Boxes highlighted in grey mean the value is at 

least 95% significant. 

Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TN CC significance CC significance CC significance 

CC 0.25 0.01 0.27 <0.01 0.18 0.07 

RMSE -0.16 0.11 -0.15 0.12 -0.07 0.50 

B -0.30 <0.01 -0.30 <0.01 -0.23 0.02 

Babs -0.14 0.17 -0.11 0.30 -0.04 0.70 

FOEX -0.24 0.02 -0.23 0.02 -0.10 0.30 

 

5.1.3. Station altitude (a.s.l.) 

Like in the case of latitude, no correlation was found between station altitude and homogenization 

metrics for maximum temperature. On the other hand, a signal emerged linking altitude and minimum 

temperature for Pearson correlation, RMSE and factor of exceedance. 

Table 9. Correlation coefficients between the five metrics of homogenized maximum temperature datasets and the 
station altitude, for the 100 southern Sweden stations. Boxes highlighted in grey mean the value is at least 95% 

significant. 

Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TX CC significance CC significance CC significance 

CC 0.16 0.12 0.16 0.11 0.14 0.16 

RMSE -0.04 0.67 -0.01 0.92 -0.02 0.85 

B 0.05 0.58 -0.06 0.52 0.15 0.13 

Babs -0.02 0.83 0.01 0.91 0.00 0.96 

FOEX 0.06 0.58 -0.04 0.70 0.05 0.61 

 



 

  Work Package 3 / Deliverable 3.5  Deliverable X.X 

21 

Although we are not interested in the Pearson correlation much, for reasons already specified in this 

report, the negative correlations in RMSE and FOEX that show up in the HOMER homogenizations of 

minimum temperature suggest that the temperature at stations with higher altitude might be slightly 

underestimated than that of stations at lower altitude. Since this effect is weaker both in magnitude and 

significance in ACMANT homogenization results, this might indicate that the latter technique is more apt 

to correctly infer minimum temperature data in southern Sweden. 

Table 10. Correlation coefficients between the five metrics of homogenized minimum temperature datasets 
and the station altitude, for the 100 southern Sweden stations. Boxes highlighted in grey mean the value is at least 

95% significant. 

Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TN CC significance CC significance CC significance 

CC 0.26 <0.01 0.28 <0.01 0.21 0.04 

RMSE -0.21 0.04 -0.20 <0.05 -0.13 0.19 

B -0.30 <0.01 -0.31 <0.01 -0.24 0.01 

Babs -0.18 0.07 -0.15 0.13 -0.10 0.31 

FOEX -0.29 <0.01 -0.30 <0.01 -0.18 0.07 

 

5.1.4. Number of breaks 

Results show that there is a moderate correlation between the number of breaks and the skill of the 

homogenization techniques (Tables 11-14). It must be noted that in all these instances, the best 

performing technique will be the one where the relationship is least relevant. In the case of Pearson 

correlation, where we have anticorrelation, i.e., the more breaks and the further the homogenized 

dataset strays from the clean data, the best performing technique will be the one with the lowest 

negative correlation. In the case of RMSE and Babs, a positive correlation means that the magnitude of 

errors increases with the number of breaks. In the case of the exceedance factor, a strong correlation, 

whether negative or positive, will mean that with the increase of break points, underestimation or 

overestimation increase too, respectively.  

Last but not least, the bias does not show any correlation: this is probably related to the intrinsic nature 

of the bias metric, as it is not adjusted for magnitude like the absolute bias. Absolute bias results prove 

that there is in fact a correlation between bias and number of breaks, but that correlation does not 

show when the sign of the bias is not accounted for.  

The metric that shows the strongest correlation with the number of breaks is the exceedance factor 

FOEX, ranging from 0.30 (ACMANT maximum temperature in southern Sweden) to 0.57 (standard 

HOMER minimum temperature in Slovenia).  

There are some slight differences between the metrics in southern Sweden and Slovenia in both 

variables: as the results for maximum temperature in Sweden are greater in magnitude and more robust 

statistically for CC, RMSE and Babs, probably the different size of the sampling (100 stations against 30) 

means that the correlation is highlighted as we increase the number of stations in the regional dataset. 
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On the other hand, the correlation between maximum temperature exceedance factor and the number 

of breaks is stronger in the Slovenian case than in the southern Swedish one (in Slovenia 0.49 for 

standard HOMER, 0.44 for SMHI-HOMER and 0.39 for ACMANT, versus 0.42, 0.33 and 0.30 respectively 

in southern Sweden), so maybe in the former instance the correlation might be overestimated, again 

because of the difference of sampling size. 

Table 11. Correlation coefficients between the five metrics of homogenized maximum temperature datasets and 
the number of breaks introduced in the corrupted set, for the 100 southern Sweden stations. Boxes highlighted in 

grey mean the value is at least 95% significant. 

Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TX CC significance CC significance CC significance 

CC -0.39 <0.01 -0.37 <0.01 -0.38 <0.01 

RMSE 0.49 <0.01 0.49 <0.01 0.49 <0.01 

B -0.04 0.70 -0.12 0.21 -0.07 0.51 

Babs 0.52 <0.01 0.50 <0.01 0.46 <0.01 

FOEX 0.42 <0.01 0.33 <0.01 0.30 <0.01 

 
Table 12. Correlation coefficients between the five metrics of homogenized maximum temperature datasets and 

the number of breaks introduced in the corrupted set, for the 30 Slovenia stations. Boxes highlighted in grey mean 
the value is at least 95% significant. 

SLOVENIA Standard HOMERr SMHI-HOMER ACMANT 

TX CC significance CC significance CC significance 

CC -0.34 <0.01 -0.29 <0.01 -0.25 0.01 

RMSE 0.37 <0.01 0.33 <0.01 0.33 <0.01 

B 0.18 0.08 -0.00 0.98 -0.08 0.45 

Babs 0.46 <0.01 0.39 <0.01 0.35 <0.01 

FOEX 0.49 <0.01 0.44 <0.01 0.39 <0.01 

 
Table 13. Correlation coefficients between the five metrics of homogenized minimum temperature datasets and 

the number of breaks introduced in the corrupted set, for the 100 southern Sweden stations. Boxes highlighted in 
grey mean the value is at least 95% significant. 

Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TN CC significance CC significance CC significance 

CC -0.31 <0.01 -0.34 <0.01 -0.29 <0.01 

RMSE 0.46 <0.01 0.50 <0.01 0.47 <0.01 

B 0.06 0.55 -0.01 0.90 0.05 0.60 

Babs 0.53 <0.01 0.54 <0.01 0.46 <0.01 

FOEX 0.57 <0.01 0.50 <0.01 0.52 <0.01 

 

On the other hand, there are some differences between maximum temperature homogenization (Tables 

11 and 12) and minimum temperature homogenization (Tables 13 and 14). While in the case of RMSE 

and Babs the increase in number of stations from Slovenia to Sweden results once again in stronger 

correlation, i.e., the increase in number of breaks yields worse results, this also happens for FOEX, 
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contrarily to the maximum temperature case. Moreover, the correlation between homogenized 

minimum temperature and the clean dataset is less influenced by the number of breaks in southern 

Sweden (-0.31, -0.34 and -0.29) than in Slovenia (-0.39, -0.40 and -0.38), contrarily to results with 

maximum temperature. 

Table 14. Correlation coefficients between the five metrics of homogenized minimum temperature datasets and 
the number of breaks introduced in the corrupted set, for the 30 Slovenia stations. Boxes highlighted in grey mean 

the value is at least 95% significant. 

SLOVENIA Standard HOMER SMHI-HOMER ACMANT 

TN CC significance CC significance CC significance 

CC -0.39 <0.01 -0.40 <0.01 -0.38 <0.01 

RMSE 0.42 <0.01 0.45 <0.01 0.46 <0.01 

B 0.03 0.80 -0.04 0.7253 -0.14 0.16 

Babs 0.49 <0.01 0.47 <0.01 0.48 <0.01 

FOEX 0.50 <0.01 0.44 <0.01 0.42 <0.01 

 

5.1.5. Impact of missing data 

With regard to missing data, it is important to note that HOMER and ACMANT have different 

approaches. HOMER reduces the number of missing data much more drastically than ACMANT (see 

Table 15): for instance, for maximum temperature, there are on average 111 missing data in southern 

Sweden stations and 98 missing data in Slovenia stations. These missing data are on average completely 

replaced in the HOMER homogenization, while with ACMANT 63 and 53 missing data respectively 

remain on average per station. 

Table 15. Missing data in S Sweden and Slovenia corrupted and homogenized datasets: maximum and mean 
number of missing data in the stations set. 

Missing 

Data 
Corrupted Dataset Standard HOMER SMHI-HOMER ACMANT 

TX S Sweden Slovenia S Sweden Slovenia S Sweden Slovenia S Sweden Slovenia 

Max 256 229 19 9 19 9 167 156 

Mean 111 98 0 0 0 0 63 53 

TN S Sweden Slovenia S Sweden Slovenia S Sweden Slovenia S Sweden Slovenia 

Max 250 214 97 28 97 28 168 168 

Mean 104 117 2 4 2 4 63 71 

 

Tables 16-19 show the results of the correlation between the missing data for each station and each 

metric used in this study. Since Homer replaces the missing values almost entirely, it is clear that, as can 

be expected, the number of missing data is not significant for the metrics. It might be that, with much 

more missing data, the skill of the homogenization method to repair the dataset could break down, but 

it might happen at a number of missing data so big to make the actual dataset de facto useless. 
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On the other hand, for what regards the ACMANT technique, since much less missing data are replaced, 

the number of missing data bears an impact on the skill of the homogenization. Although there is no 

significant worsening of Pearson correlation results (given the already high correlation between the 

corrupted dataset and the clean one), especially Babs and FOEX are significantly affected, for both 

regional datasets in both variables. 

Table 16. Correlation coefficients between the five metrics of homogenized maximum temperature datasets and 
the number of missing data introduced in the corrupted set, for the 100 southern Sweden stations. Boxes 

highlighted in grey mean the value is at least 95% significant. 

Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TX CC significance CC significance CC significance 

CC 0.01 0.89 0.06 0.58 0.16 0.10 

RMSE -0.02 0.84 -0.08 0.45 -021 0.04 

B 0.13 0.21 0.05 0.59 0.20 0.04 

Babs -0.06 0.57 -0.11 0.27 -0.38 <0.01 

FOEX 0.01 0.94 -0.05 0.59 -0.25 0.01 

 
Table 17. Correlation coefficients between the five metrics of homogenized maximum temperature datasets and 

the number of missing data introduced in the corrupted set, for the 30 Slovenia stations. Boxes highlighted in grey 
mean the value is at least 95% significant. 

SLOVENIA Standard HOMER SMHI-HOMER ACMANT 

TX CC significance CC significance CC significance 

CC -0.04 0.71 -0.04 0.71 0.13 0.20 

RMSE 0.08 0.41 0.06 0.57 -0.13 0.21 

B 0.11 0.28 0.07 0.48 -0.03 0.78 

Babs 0.06 0.52 0.03 0.77 -0.28 <0.01 

FOEX 0.08 0.41 0.06 0.53 -0.33 <0.01 

 
Table 18 Correlation coefficients between the five metrics of homogenized minimum temperature datasets and 

the number of missing data introduced in the corrupted set, for the 100 southern Sweden stations. Boxes 
highlighted in grey mean the value is at least 95% significant. 

Southern 

SWEDEN 
Standard HOMER SMHI-HOMER ACMANT 

TN CC significance CC significance CC significance 

CC 0.05 0.60 0.05 0.63 0.16 0.12 

RMSE 0.02 0.85 0.03 0.76 -0.14 0.18 

B 0.09 0.38 0.09 0.36 0.06 0.53 

Babs 0.04 0.70 0.04 0.66 -0.27 <0.01 

FOEX 0.12 0.22 0.13 0.20 -0.20 <0.05 

 

The one exception to this pattern happens for minimum temperature in Slovenia. Here, there is no 

significant relationship between missing values and ACMANT performance, while we can see some 

significant, albeit weak, correlation between Homer and missing data, especially for the Standard 
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HOMER technique. It is very difficult to pinpoint to an explanation for this difference, as the magnitude 

in the number of missing data remains the same. 

Table 19. Correlation coefficients between the five metrics of homogenized minimum temperature datasets and 
the number of missing data introduced in the corrupted set, for the 30 Slovenia stations. Boxes highlighted in grey 

mean the value is at least 95% significant. 

SLOVENIA Standard HOMER SMHI-HOMER ACMANT 

TN CC significance CC significance CC significance 

CC -0.17 0.08 -0.14 0.16 -0.02 0.83 

RMSE 0.23 0.02 0.19 0.05 0.04 0.72 

B 0.20 0.04 0.14 0.16 0.06 0.52 

Babs 0.24 0.01 0.17 0.09 -0.10 0.30 

FOEX 0.24 0.02 0.19 0.06 -0.18 0.06 

 

As the conclusion for this section, it can be noted that the results showed that RMSE, absolute bias and 

factor of exceedance are the most useful metrics for evaluating homogenization techniques’ 

performance.  

Very weak, significant negative correlations are detected between station distance from the sea and 

factor of exceedance (FOEX) and between station altitude and both RMSE and FOEX for minimum 

temperature homogenization results obtained with the two HOMER techniques. This suggests that 

temperature at stations further from the sea and at higher altitude might be very slightly 

underestimated when homogenized with Homer rather than with ACMANT. Latitude of the stations do 

not seem to have an impact on how well a technique homogenizes temperature data, although 

significant results were achieved for RMSE in Standard HOMER, where the increase in latitude seems to 

correlate with an increase in error in Slovenia. 

Regardless of the technique used, the quality of homogenization anti-correlates meaningfully to the 

number of breaks. Missing data do not seem to have any impact on HOMER homogenization in southern 

Sweden for both variables, and for maximum temperature in Slovenia, while a very weak, albeit 

significant, negative impact emerges between standard setup HOMER performance and number of 

missing data for minimum temperature in Slovenia. The reverse is true about ACMANT: the number of 

missing data significantly affects homogenization performance in a negative way, with the exception of 

minimum temperature homogenization for the Slovenia dataset.  

In general, the nature of the datasets (i.e., number of breaks and missing data) seems to have a more 

important role in yielding good homogenization results than physical parameters associated to the 

stations (i.e., latitude, elevation and distance from the sea). Even though from this point of view, the 

skill of HOMER to replace most missing data give it the upper hand over ACMANT, the actual metrics 

show that ACMANT still performs better for these variables in these regions for what concerns RMSE 

and absolute error Babs, while HOMER performs better with regard to the factor of exceedance FOEX. 
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5.2. Uncertainty quantification of the Climatol adjustment on the daily scale 

In this section, the uncertainty associated with Climatol’s adjustment algorithm applied to daily 

minimum and maximum air temperature is investigated (i.e., perfect detection was assumed). The 

uncertainty quantification was performed based on several numerical experiments and the INDECIS 

benchmark data from the southern Sweden domain (Skrynyk et al., 2020). Using a complex approach, 

the adjustment uncertainty was evaluated at different levels of detail (day-to-day evaluation through 

formalism of random functions and six statistical metrics) and time resolution (daily and yearly). 

However, only the main source of potential residual errors was considered, namely station signals 

introduced into a raw data set to be homogenized/adjusted. Other influencing factors, such as the 

averaged correlation between a candidate and references, number of reference stations etc., were 

removed from the analysis or kept almost unchanged. 

5.2.1. Case study #1 

This first case study considers ten stations (Figure 9) and limits the length of the corresponding time 

series to the period of 1971-1980 (10 years, similar to Vincent et al. (2018)). Nine time series (the 

references), belonging to the stations marked in black color in Figure 9, are left clean, while the time 

series of the tenth station (the candidate), depicted in red, is assumed to be corrupted with only one 

break point dated to 01.01.1976. That is, the first half (1971-1975) of the period under study is intended 

to be corrupted. Using the same matrix notations as in (2), these initial conditions can be written as 

follows 

, when , , or , ; (16.1) 

, when ,  ,                         (16.2) 

where  is the total number of days in the time interval 1971-1980, while  is the number of 

days in the interval 1971-1975. 

The average distance between the candidate and reference stations is ~34 km, while the averaged 

Pearson’s correlation coefficient between  and ,  is 0.96 for TN and 0.97 for TX data. 

Before the correlation calculation, the seasonal cycle was removed from each time series using an 

approach similar to Vincent et al. (2018). 

In order to construct the raw data with the corrupted 5-year sub-period ( , , 

), we analyzed all station signals in , that were initially introduced in the INDECIS 

benchmark, and defined homogeneous error segments that have the length of more than 5 complete 

consecutive years (since January 1 until December 31). For instance, in the error time series shown in 

Figure 7a, all three homogeneous non-zero segments, i.e. 01.01.1950-13.08.1966, 14.08.1966-

19.02.1972, 20.02.1972-08.09.2000, satisfy this condition. The total numbers of such segments in TN 

and TX error data sets are 185 and 193, respectively. Then 185 for TN and 193 for TX different versions 

of the raw time series were constructed by shifting (translating along the time axis) a 5-year period from 

each of the defined segments to 1971-1975 and adding them to the respective clean data , , 
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. This way (by performing such replacements), we obtained a statistical ensemble of 

individual realizations of the raw data set , , where  for TN and  for 

TX. The members of the ensemble differ from each other by only statistical properties of the disturbed 

segment in the tenth series (see (16.1) and (16.2)), which are well known (Figure 4 and 5) and, hence, 

can be considered as controlled. Applying Climatol with the predefined break point to each member of 

the statistical ensemble, we obtained a sample of the respective number of the adjustment results, 

which were used for further calculations. It should be mentioned that the average correlation between 

,  and the system of the reference series ,  slightly varies for different . 

For TN data the range of the correlation coefficient values is  with the mean around , 

while for TX data the range and the mean are  and , respectively. We believe that such 

variations are not substantially influencing on the adjustment results and, furthermore, they are 

unavoidable since they come from the variations of station signals in the statistical ensemble of the 

candidate time series. 

 
Figure 9. The chosen set of meteorological stations in case study #1. Black dots show the stations whose 

time series were always clean, red square is the station where inhomogeneities were introduced 

The same corrupted period along with unchanged system of reference series allows to conduct 

statistically reliable and justified evaluation of the residual errors. Moreover, the approach, used in case 

study #1, provides an assessment of a nearly pure effect of the introduced station signals on the 

adjustment uncertainty. This is because any other factors, which might have some effect on the 

homogenization adjustment, were kept approximately constant or removed. 

Figure 10 shows the results of the adjustment uncertainty quantification on the daily scale by applying 

the concept of a random field to the residual errors . Since only a single time series of the raw data 
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set was corrupted on 1971-1975,  has non-zero values only for one point in the space domain (i.e. for 

tenth station) and just for the first half of the period under study. Therefore, the statistical properties of 

 were defined only for this station and period. In Figure 10, the mean values, 5th ( ) and 95th 

( ) percentiles of empirical distributions of , calculated for each day of 1971-1975, are shown. 

Figure (a) shows the calculations for TN, while (b) depicts the similar results for TX. The mean values 

were calculated based on formula (7.1), whereas the percentiles were evaluated using the samples of  

(  for TN and  for TX) values ,  for each day ( ). 

 
Figure 10. Mean, 5th and 95th percentiles (  and ) of empirical distributions of the residual errors, 

evaluated for each day of the corrupted segment: (a) TN, (b) TX 
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As can be seen from the figure, the calculated parameters, means and percentiles, vary in time. Beside 

noise, which is due to the limited number of individual realizations in the statistical ensemble, a regular 

one-year periodicity can be observed. Generally, the range of the residual error is less in summertime 

compared to winter months. Such non-stationary/periodic behavior of the widths of the residual error 

distributions can be attributed to the similar periodicity of the introduced errors . The reason for the 

seasonality in  is significantly less local spatial variability of air temperature in a summer period 

compared to winter. Thus, we could expect that the adjusted values of air temperatures, both TN and 

TX, are closer to the true climate signal in summer than in winter. 

The similar 1-year periodicity of the mean values of the residual error distributions implies periodic bias 

of the air temperature, adjusted by the Climatol software. For both climatic variables, the residual errors 

are slightly shifted to negative values during summertime, while in winter months the shift has opposite 

direction. Such bias periodicity means the average underestimation of temperature in summer, and the 

overestimation in winter and it should have some influence on the amplitude of the seasonal cycle of 

the adjusted minimum and maximum air temperature. 

In order to provide additional evidences for the conclusions, stated after the qualitative analysis of the 

results presented in Figure 10, we averaged the empirical error distributions over the whole period, and 

over January and July months separately (Figure 11). Table 20 contains some of the parameters of these 

averaged distributions. Similar parameters for the introduced errors are presented in the table for 

comparison. The seasonality of the residual error distributions is seen in the figure for both variables 

and it is also supported by the table content. 

 
Figure 11. Empirical distributions of the residual errors, averaged over (a, d) the whole 5-year period, (b, 

e) January months, (c, f) July months: (top panel) TN, (bottom panel) TX 

In summer months, the percentile intervals of the residual errors, , for the adjusted daily TN 

and TX air temperatures are  (oC) and  (oC), respectively. Note, that such 
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quantitative assessments can be considered as one of possible measures of Climatol’s adjustment 

uncertainty. The corresponding mean values of the error distributions are oC and oC. These 

results imply that in summer we could expect any adjusted temperature value  to be slightly 

underestimated (on average) compared to a respective clean temperature  by oC for TN and 

 oC for TX. Also, we could expect with 90% probability that for minimum air temperature the 

adjusted value  lays in the interval  (oC), while for maximum air 

temperature the interval is  (oC). It is important to note a reduction by 

~26/11% (TN/TX) in the percentile range length of the residual errors compared to the introduced ones. 

Such decreasing of the uncertainty is a quantitative assessment of the added value (Sturm and 

Engström, 2019) of the homogenization adjustment performed by the Climatol software on day-to-day 

level in a summer period. 

Table 20. Parameters of averaged empirical distributions of errors: homogenization/residual  and 

real/introduced  (all in oC) 

 
Year January July 

      

TN 

Mean -0.03 -0.11 0.40 -0.08 -0.41 -0.13 

SD 2.15 2.53 2.56 2.97 1.39 1.85 

P05 -3.20 -4.00 -3.60 -4.90 -2.80 -3.20 

P95 3.20 3.70 4.50 4.60 1.70 2.90 

P95-P05 6.40 7.70 8.10 9.50 4.50 6.10 

TX 

Mean -0.02 -0.00 0.28 -0.03 -0.22 0.04 

SD 1.64 1.84 1.58 1.78 1.48 1.67 

P05 -2.50 -2.70 -2.00 -2.70 -2.60 -2.50 

P95 2.30 2.60 2.60 2.60 1.90 2.50 

P95-P05 4.80 5.30 4.60 5.30 4.50 5.00 

 

In winter months, the ranges , evaluated for the homogenization adjustment errors in TN 

and TX data are  (oC) and  (oC), respectively. The corresponding mean 

values of the error distributions are oC for TN and oC for TX. Thus, in winter we could expect 

any adjusted temperature value  to be slightly overestimated (on average) by  oC for TN and 

oC for TX relatively to the respective clean value  and with 90% probability it lays in the interval 

 (oC) in case of TN air temperature and  (oC) in case 

of TX. Compared to summer months, there is noticeable difference between widths of  

intervals calculated for TN and TX winter residual errors. For minimum air temperature such interval is 

substantially larger (almost twice) meaning larger uncertainty in the adjusted values of TN in this period 
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of the year. Similar to the summer period, the homogenization adjustment reduced the width of the 

introduced error distribution by 15/13% (TN/TX). 

The parameters of the empirical distribution of the residual errors, averaged over the whole 5-year 

period (see Table 20), can characterize only overall (time-averaged) Climatol performance and 

uncertainty. Some peculiarities of the errors time evolution are neglected. For instance, the shifts of the 

error mean values in the opposite directions during the winter and summer seasons compensate each 

other yielding perfect, almost unbiased Climatol’s adjustment. The 5th and 95th percentile for TN and TX 

are between the respective summer and winter values, showing averaged uncertainty of the Climatol 

software. The standard deviations of the residual error distributions, which also can be used to 

characterize the adjustment uncertainty along with the percentile range, are oC for TN and oC 

for TX. These numbers are important because they can be compared later with averaged values of 

, which are also intended to show the general/overall uncertainty of the homogenization 

adjustment. 

Figure 12 summaries evaluating results of Climatol’s adjustment performance (including its uncertainty), 

which were obtained by applying the statistical metrics. It is important to keep in mind when 

interpreting these results that the metrics can provide only information regarding overall time-averaged 

performance of the software. As was pointed above, the six metrics that were used in the study yield 

detailed evaluation of Climatol’s capability of removing systematic and random errors in each individual 

realization of the raw time series of a statistical ensemble. However, only averaged value of  

(averaged over a statistical ensemble) can be considered as a measure of the adjustment uncertainty, 

providing information regarding the width of empirical distribution of the potential residual errors. For 

each metric, 185/193 (TN/TX) values were calculated, that corresponds to the numbers of individual 

realizations in the statistical ensembles. These metric values are summarized as boxplots in the figure. 

Note, that the boxplots of the metrics, calculated for the respective raw data, are also shown for relative 

evaluation of the adjustment efficiency. Due to very short adjusted period (just 5 years) the climate 

extremes indices were not calculated and the evaluation of the Climatol software on the yearly scale 

was not performed in this series of numerical experiments. 

As can be seen from the figure, the mean value of bias ( ) and its interquartile range (IQR), which we 

use as a convenient measure of the metric distribution width directly shown in the boxplots, tend to 

zero for both variables, TN and TX. Similar tendencies are observed for . Here IQR is not zero, but 

it has relatively small magnitude, especially for TN. Both these metrics indicate the almost perfect 

performance of the Climatol software in removing systematic errors (shifts in the means). Such 

conclusion is plainly and brightly supported by a simple visual comparison with the same metrics in the 

raw data. 

However, another type of the systematic residual errors associated with the seasonality of discrepancies 

between the homogenized and clean data (described by ) is not removed. Moreover, such type 

of errors seems to be slightly amplified by Climatol in a sense that almost all values of  became 



 

  Work Package 3 / Deliverable 3.5  Deliverable X.X 

32 

negative compared to the symmetric distribution of the metric values in the raw data. That means the 

simultaneous underestimation of summer temperatures and overestimation of winter ones, and as the 

result - the underestimation of the amplitude of seasonal cycle. Such conclusion is fully supported by the 

day-to-day evaluation provided above. The potential ability of the Climatol software to slightly alter 

seasonality was also pointed out by (Sturm and Engström, 2019). 

The performance of the Climatol software in removing random errors is not so pronounced as the 

removing systematic ones. After adjusting, the means and IQRs of metrics ,  and  

for both variables, TN and TX, are slightly improved compared to similar values in the raw data. 

However, this improvement seems to be associated with the almost perfect removing of break point 

shifts in the means, and not directly related to the real Climatol’s capability of coping with the scatter of 

errors. The mean value of , which yields the overall, time-averaged assessment of the adjustment 

uncertainty, is oC for TN and oC for TX. Such values are very close to the previously calculated 

standard deviations of the residual error distributions, calculated on the day-to-day level and averaged 

over 5-year period (see Table 20). The coincidence of the uncertainty estimates that were obtained by 

applying different approaches indicates robustness of the drawn conclusions and the quantitative 

assessments. In addition, our assessments of  for TN and TX adjusted data are close to similar 

estimates presented by Vincent et al. (2018). 

 
Figure 12. Boxplots of the metrics, calculated in the set of numerical experiments #1: (a) TN, (b) TX 
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It is worth noting again that the provided quantitative assessments of Climatol’s performance and 

uncertainty (as well as those given in the following section) are valid only for cases when the correlation 

between candidate and reference series is quite high, ~  for TN and  for Tx. As 

it was already mentioned, the uncertainty quantification in other situations, i.e. with other values of 

correlation ties between time series, will be performed in our future work. 

5.2.2. Case study #2 

This case study is more complex since the raw time series can have more than one break point and their 

positions are not strictly fixed: they are different in different realizations of the experiment. Here, we 

used the same ten stations presented in Figure 9 but considered them on the initially defined period of 

time 1950-2005. Similar to case study #1, nine time series (the references) are always kept clean, while 

constructing of the tenth disturbed or candidate series was slightly changed. Formally, these initial 

conditions can be stated in the following form 

, when , , or , ; (17.1) 

, when ,  ,                                (17.2) 

where  is the total number of days in the time interval 1950-2005, while  is the number of 

days in a disturbed segment/s of the candidate time series.  varies in different realizations of the 

numerical experiment. 

In the INDECIS benchmark for the southern Sweden domain, 94 and 96 different non-zero station signals 

were created for TN and TX data, respectively (Figure 3). By adding these error series to the clean data 

of the tenth station alternately, we created corresponding numbers of different realizations of the raw 

data, which were used as inputs for the Climatol software. As in the previous case, each realization of 

this statistical ensemble consists of nine clean and one perturbed time series. By performing such 

replacement of the station signals, we do not change significantly the statistical properties of the 

introduced errors: the distributions of their means and standard deviations are almost the same as in 

case study #1. Besides, we do not change the system of reference stations. Pearson’s correlation 

coefficients between  and ,  and between  ( ) and ,  

are almost the same as in the previous case for both TN and TX data. But we change the structure and 

timing of break points (which positions are predefined during Climatol calculations), make it more 

difficult for the software to adjust different segments happened simultaneously in the raw time series. 

In addition, in this set of numerical experiments we can estimate Climatol’s performance and its 

uncertainty on the yearly scale by defining the residual errors in the adjusted time series of the climate 

extremes indices. Evaluation of the Climatol software in case study #2 on the daily scale was performed 

only through metrics, i.e. only overall, time-averaging evaluation was carried out. Day-to-day estimation 

of the residual error distributions, based on the concept of a random field, was not conducted. Such 

estimation is difficult to perform statistically correct in case study #2 since individual realizations of the 

raw candidate time series in the statistical ensemble have last undisturbed periods of different lengths. 
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Consequently, for days in the end of 1950-2005 calculations would operate with considerably less 

quantity of non-zero error values compared to days in the beginning of 1950-2005. 

Figure 13 contains boxplots of the metrics that were calculated on the daily scale for the adjusted TN 

and TX data. Similar to the previous case, we provided also corresponding metric values for raw data in 

order to evaluate relative success of the adjustment algorithm. As it can be seen from the figure, the 

distributions of the metric values are almost the same as in the previous case. That means good 

Climatol’s performance in removing systematic errors (shifts in the means) and moderate improvement 

of the metrics showing removing of scatter/random residual errors. However, the seasonality of residual 

errors and the related issue of the underestimation of the seasonal cycle amplitude is also preserved in 

this case study. Therefore, a number of break points in the raw time series does not influence 

significantly the accuracy of Climatol’s homogenization adjustment. If they are correctly defined during 

the detection process, the same (on average) adjustment results should be expected, no matter how 

many breaks were detected in each of raw time series. 

 
Figure 13. Boxplots of the metrics calculated in the set of numerical experiments #2: (a) TN, (b) TX 

The mean value of  for the adjusted TN data is oC, while for the TX adjusted time series this 

parameter equals to oC. These values are very close to the similar estimates that were obtained in 
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case study #1. Thus, the overall time-averaged uncertainty of Climatol’s adjustment is not influenced 

significantly by including multiple break points in the raw time series. 

It is important to evaluate how the accuracy of the adjustment algorithm for data with the daily 

temporal resolution is reflected in calculation of climate extreme indices and their regular tendencies 

(trends) (e.g. Trewin and Trevitt, 1996). To do so, we calculated the yearly time series of the 

temperature data, TNy and TXy, and the following indices (Klein Tank et al., 2009): FD (frost days), TR 

(tropical nights), TN10p (cold nights), TN90p (warm nights), ID (ice days), SU (summer days), TX10p (cold 

days), TX90p (warm days). However, due to peculiarities of the southern Sweden climate (relatively 

cold) we slightly shifted the standard absolute thresholds in the respective climate extremes indices. 

That is, instead of 0 and 20oC for FD and TR, respectively, we used -10 and 10oC. Instead of 0 and 25oC 

for ID and SU, respectively, the thresholds of 5 and 20oC were used. In order to indicate these changes in 

the calculating algorithms of the indices clearly, we will denote them as FD-10, TR10, ID5 and SU20. 

Calculation of the indices was performed for raw, clean and homogenized data based on the RClimDex 

software (Zhang et al., 2018). After that, quantifying the discrepancies between the indices calculated 

based on the clean and homogenized data was performed by means of only two metrics, namely  and 

. Similarly to the daily time series, the metrics were calculated using the adjusted 

segment/segments only. In addition, we computed differences/errors in the indices linear trends ( ), 

calculated for the adjusted and clean data. The trends were evaluated over the whole time series 

(including undisturbed segments) through the least squares regression. 

The boxplots of the metrics calculated based on the adjusted yearly time series of the air temperature 

data and the climate extremes indices are presented in Figure 14. Similar results that were obtained 

based on the raw yearly series are also presented in the figure for comparison. As can be seen in the 

figure, the averaging TN and TX daily data to the yearly scale almost completely remove the both types 

of residual errors. Nearly zero values of  for adjusted TNy and TXy series is a trivial result, since 

Climatol removes very well systematic errors even in daily data. The mean value of  for TNy is 

reduced after adjustment from 0.94oC to 0.20oC (by ~78%) while for TXy the reduction is slightly less: 

from 0.56oC to 0.16oC (by ~63%). Such substantial improvement of  for both climatic variables 

can be explained by the fact that averaging data to the yearly scale removes random/noisy part of the 

residual errors, seen on the daily scale. Note, that the mean values of , 0.20oC for TNy and 0.16oC 

for TXy, can be also considered as the measures of Climatol’s adjustment uncertainty on the yearly time 

scale. In addition, as can be seen in the figure, Climatol removes most of the trend error in TNy and TXy 

data. The mean value and IQR of  are almost zeros (~0.00 and ~0.01oC/decade, respectively) for 

both climatic variables. 

Climatol removes well both types of errors also in the time series of all considered extreme indices. This 

is clearly seen in the figure, where empirical distributions of  and , calculated based on the 

adjusted data, can be compared with similar distributions, obtained for the raw series. Both metrics for 

all indices indicate substantial improvement after applying Climatol’s adjustment. The underestimation 

of the seasonal cycle amplitude in the adjusted data, seen on the daily time resolution, is not so 
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noticeable in the indices time series, probably due to relatively small negative values of  (see 

Figure 13). However, the means of  for all indices with fixed thresholds are slightly negative, meaning 

general slight underestimation of these indices in the adjusted data. 

Below we focus mainly on trend evaluation in the time series of the extreme indices due to their critical 

importance in climatological applications. The empirical distributions of errors (differences) in trends, 

, calculated for the adjusted data are also presented in Figure 14. Table 21 contains some of 

parameters of the empirical distributions of  values. The first noticeable qualitative conclusion that 

can be drawn from the figure is substantial decreasing of the trend errors in the adjusted data compared 

to the raw ones. Regular tendencies of all extreme indices, evaluated based on the corrected data, are 

much closer to real trends than evaluated based on the raw time series. 

 
Figure 14. Boxplots of the metrics calculated based on the yearly series of the climate extremes indices 

in the set of numerical experiments #2: (a) TN, (b) TX 

Based on the table content, quantitative assessments of Climatol’s accuracy and uncertainty in the 

indices trend calculation can be derived. For instance, the mean value of the trend errors in the adjusted 

series of FD-10 (frost days) is relatively small,  days/decade (  days/100years). The uncertainty of 

the trend calculation in the adjusted FD-10 data can be estimated by mean of the standard deviation 

(  days/decade) or the percentile range , which is (days/decade). Thus, 

we could expect, that a linear trend, calculated in the FD-10 yearly time series that was corrected by the 
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Climatol software, is slightly shifted (on average) on  days/decade relatively to the true climate 

trend ( ), and with 90% probability it lie in the interval (days/decade). It 

is worth noting, that the percentile range of the trend errors in the raw time series is significantly larger, 

(days/decade), i.e. after applying Climatol, a 80% decrease of the uncertainty can be 

reported. Similar assessments can be obtained from Table 21 for other climate extreme indices. We also 

can conclude, that, in general, trends can be estimated more accurately and with less uncertainty in the 

adjusted time series of the TX extreme climate indices than in TN extremes. One more important 

conclusion is that despite the substantial amount of the residual scatter/random errors which still 

remain in the adjusted daily time series, the linear trends calculated on the corrected yearly time series 

are reliable and close to real regular tendencies and they can be evaluated with significantly removed 

uncertainty. 

Table 21. Parameters of empirical probability distributions of  (errors/differences in linear trends), defined for 

yearly time series of climate extreme indices: (a) TN, (b) TX 

a) 

FD-10 
days/decade 

TR10 
days/decade 

TN10p 
%/decade 

TN90p 
%/decade 

hom-cln raw-cln hom-cln raw-cln hom-cln raw-cln hom-cln raw-cln 

Mean 0.29 -0.26 0.64 -0.79 -0.35 -0.52 -0.29 -0.73 

SD 0.42 1.83 0.74 3.59 0.42 1.25 0.34 1.27 

P05 -0.23 -3.00 -0.42 -6.65 -1.02 -2.22 -0.79 -2.54 

P95 0.94 2.92 2.05 2.55 0.32 1.44 0.31 0.28 

P95-P05 1.17 5.92 2.47 9.20 1.34 3.66 1.10 2.82 

b) 

ID5 

days/decade 

SU20 

days/decade 

TX10p 

%/decade 

TX90p 

%/decade 

hom-cln raw-cln hom-cln raw-cln hom-cln raw-cln hom-cln raw-cln 

Mean -0.05 -0.36 0.21 -0.56 -0.13 -0.13 -0.10 -0.36 

SD 0.27 0.88 0.44 1.73 0.33 0.79 0.23 0.64 

P05 -0.49 -1.88 -0.37 -3.41 -0.71 -1.47 -0.49 -1.40 

P95 0.39 0.96 0.96 2.00 0.33 1.06 0.23 0.56 

P95-P05 0.88 2.84 1.33 5.41 1.04 2.53 0.72 1.96 

 

6. Conclusions 

The INDECIS project has provided the excellent benchmark data sets which can be used for 

verification/validation/evaluation/uncertainty quantification of homogenization software. In the Report, 

the benchmark data were used to evaluate performance of several homogenization 

methods/techniques (HOMER, SMHI-HOMER and ACMANT) on the monthly time scale and to quantify 

uncertainty of the Climatol software on the daily scale. 

Based on a set of calculated statistical metrics, the evaluation of the software HOMER, SMHI-HOMER 

and ACMANT on the monthly scale was focused on potential dependences of the homogenization 

results on physical features of a station (i.e. latitude, altitude, distance from the sea) and the nature of 
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the inhomogeneities (i.e. the number of break points and missing data). In general, the nature of the 

datasets (i.e., number of breaks and missing data) seems to have a more important role in yielding good 

homogenization results than physical parameters associated to the stations (i.e., latitude, elevation and 

distance from the sea). 

For the Climatol software, the quantification of uncertainty of its adjustment algorithm was performed 

for daily air temperature time series. The residual errors were evaluated using complex approach which 

allowed to perform the uncertainty evaluation on the day-to-day scale as well as overall (averaged over 

time) assessment. On the yearly scale, the uncertainty was evaluated mainly based on calculation of 

climate extremes indices. As a general conclusion, it can be stated that Climatol removes very well 

systematic errors related to jumps in the means. Scatter errors in the daily raw time series are removed 

less efficiently. Besides, Climatol’s adjustment uncertainty, evaluated on the daily scale, varies over 

time. The width of the residual errors distribution in summer months is substantially less compared to 

wintertime. In addition, both types of errors are removed well in the yearly time series of the air 

temperature and the extreme indices. Substantial decrease of the linear trend errors in the yearly time 

series can also be reported. 
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