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Summary 

 
An intercomparison of two global widely used reanalysis datasets with reference data has been 

performed in terms of wind speeds, Capacity Factor (CF) and Wind Power Density (WPD). Both 

CF and WPD are energy indices extensively used within the wind energy field to anticipate the 

power production or evaluate the performance of a running wind farm, among others. The three 

parameters are computed using the ERA5 and MERRA2 reanalyses at 77 locations where high-

quality data is available from instrumented tall towers. A comparison with these data reveals that 

the reanalyses generally underestimate seasonal mean wind speeds, and thus CF and WPD are 

underestimated as well. However, the ERA5 shows better correlations than MERRA2 for all three 

studied parameters. We recommend using the ERA5 near surface wind fields to estimate monthly 

wind speeds and CFs, whereas the ERA5 surface winds appear to be a better source to derive 

accurate estimates of WPD. 

 

 

Wind energy indices: Capacity Factor and Wind Power Density 

 
The Capacity Factor (CF) is an index used within the wind power sector to assess the 

performance or usage of any generating power plant, no matter their sizes. For a given period, it 

is calculated dividing the produced generation by the maximum production that would be achieved 

if the plant were operating at full capacity during all the time: 

 

𝐶𝐹 =
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ∈ 𝑎𝑡𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑡

𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ∈ 𝑎𝑡𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑡
 

 

Usually expressed as a percentage, it may also be interpreted as the proportion of time that the 

plant would have to be working at full capacity to produce the same amount of energy produced. 

The conversion between wind speed and power output is usually made employing power curves, 

which are provided by the turbine manufacturers and take into account the specific efficiency 

characteristics of the turbine model. Then, the capacity factor can be derived from power curve 

values easily, dividing power output by the nominal capacity of the turbine. 

 

The international standard IEC-61400-1 (IEC, 2005) defines four classes of wind turbines (type I, 

II, III and IV) depending on the mean and peak wind speeds in the area where the wind farm is 

planned to be installed. Type I turbines are suited for areas with high annual average wind speeds 

(10 ms-1), so they are physically heavy to withstand heavy loads. Taking this classification into 

account, the CF can also be defined to each one of the turbine classes (CF1, CF2, CF3, and 



CF4). 

 

CF also gives an idea of how good are the atmospheric conditions for producing energy during a 

specific period in a wind farm.  

 

Wind Power Density (WPD) is another wind energy index that does not depend on technological 

factors. The meteorological factors upon which wind power generation depends are wind speed 

(𝑣) and air density (𝜌). Particularly, the kinetic energy of the wind blowing through a square metre 

of air (also referred to as Wind Power Density, WPD) is: 

 

𝑊𝑃𝐷 =
1

2
𝜌𝑣3 , where 𝜌 =

𝑝

𝑅𝑑𝑇
  (𝑅𝑑 = 287.05 𝐽 𝑘𝑔⁄ ) 

 

Therefore WPD indicates the total kinetic energy that is available in the wind for extraction and 

conversion to electricity. The efficiency in converting to electricity depends on the employed 

technology and can vary a lot (Burton et al., 2001). 

 

Data and methods 

 
The ECVs that have been assessed are surface (10-metre) and near-surface (50 and 100 metres) 

wind speeds from the ERA5 (Copernicus Climate Change Service, 2017) and MERRA2 (Molod 

et al., 2015) reanalyses. These reanalysis wind fields will be verified against in situ quality-

controlled data taken at several tall tower locations and collected within the Tall Tower Dataset 

(Ramon and Lledó, 2019). These high vertical structures measure wind speeds at many heights 

above ground, usually ranging from 10 to 200 metres above ground level. In our work, we have 

selected as observational reference the tower measuring level which is closest to 100 metres. To 

provide robust verification results, we have carefully selected those towers containing time series 

spanning at least three years. A total of 77 series from locations distributed worldwide (see Figure 

1) have been employed. 

 



 
 

Figure 1.- Global distribution of the 77 tall towers. 

 

In addition to the wind speeds, the two relevant indices for the wind power industry, CF and WPD, 

have been computed from reanalyses and tower locations and evaluated as well. In the case of 

CF, turbine classes I, II and III will be considered, and a CF for each turbine class will be 

examined. For that purpose, three manufacturer-provided power curves have been used (Lledó 

et al., 2019). 

 

Reanalysis data are first interpolated horizontally by taking the closest grid point to the tower 

location. The intercomparison of wind speed and WPD is performed at the selected tower 

measuring heights. To vertically extrapolate reanalysis surface and near surface winds (𝑊𝑆) to 

the tower measuring heights (ℎ), a power law equation has been assumed: 

 

𝑊𝑆(ℎ) = 𝑊𝑆(ℎ𝑟𝑒𝑓) (
ℎ

ℎ𝑟𝑒𝑓
)
𝛼

    𝛼 = 0.143𝑓𝑜𝑟𝑖𝑛𝑙𝑎𝑛𝑑𝑠𝑖𝑡𝑒𝑠; 𝛼 = 0.11𝑓𝑜𝑟𝑤𝑎𝑡𝑒𝑟𝑏𝑜𝑑𝑖𝑒𝑠   

     
Where ℎ𝑟𝑒𝑓 is the reference height of the reanalysis field (i.e., 10, 50 or 100 metres). The 

comparison of the CF, however, is done at 100 metres, since the power curves are explicitly 

meant for 100-meter height wind turbines. We note that in this case, tall tower winds also need to 

be extrapolated vertically to 100 metres.  

 

Monthly averages of wind speeds and the two indices are first compared in terms of correlat ion, 

standard deviation, and centered root mean squared error (CRMSE). A Taylor diagram (Taylor, 

2001) is employed here to visualise those three parameters in one single graph. Then, seasonal 

averages are prepared and compared among them.  

 



 

Results 

 

Surface and near surface wind speeds 

 

 
Figure 2.- Taylor diagram of the pairwise observed and reanalysis monthly-averaged winds. Radial dimension 

represents the model standard deviations normalised by the observations’. Pearson correlation coefficients are 

represented in the angular coordinate whereas the arcs show the CRMSEs. 

 

Monthly-averaged wind speeds from both reanalysis and tall towers are compared by 

means of a Taylor diagram in Figure 2. We note that in general, the ERA5 provides better 

correlations and lower CRMSEs than MERRA2. The comparison with the observed 

variability, however, reveals that the near surface winds offer less variability than surface 

winds from both reanalysis datasets. These differences in variability between surface and 

near-surface wind fields are mainly produced by the power law extrapolation, which 

effects are more appreciable in the extrapolation of the surface wind fields. Overall, the 

ERA5 near-surface winds offer the closest results to the observed. 

 
Figure 3.- Boxplots summarising the differences between observed (obs) and reanalysis (mod) seasonal 



climatologies for 77 tall towers in (a) December-January-February, (b) March-April-May, (c) June-July-August and (d) 

September-October-November.   

 

Seasonal averages of wind speeds have also been prepared and intercompared. The 

distribution of the differences between observed and reanalysis seasonal averages at the 

77 tall tower sites is presented in box plots in Figure 3. The range of the differences is 

rather similar for the four datasets. Overall, an underestimation of the seasonal averages 

by the reanalyses is observed. The widest dispersion is observed in DJF (Figure 3a). The 

wide range of differences observed is probably related to the representativeness errors 

of reanalyses gridded products, i.e. its inability to represent the spatial variability within a 

grid cell. 

 

 

Capacity factor 

Taylor diagrams presenting the intercomparison of the CFs for the turbine types I, II and 

III computed using the surface and near surface winds from ERA5 and MERRA2 are 

shown in Figure 4. Once again, ERA5 presents better correlations and lower CMRSEs 

than MERRA2. In terms of variability, it is observed that the vertical extrapolation of the 

ERA5 surface winds derives in an excess of variability in all three CFs. However, the 

ERA5 near surface winds, which are already delivered at the 100-metre level, match the 

observed variability of the three CFs at the tower locations. Also, MERRA2 surface winds 

reproduce well the observed variability but show lower correlations than ERA5. 

 

 



 
Figure 4.- Taylor diagram of the pairwise monthly observed and reanalysis-derived (a) CF1, (b) CF2 and (c) CF3. 

Radial dimension represents the model standard deviations normalised by the observations’. Pearson correlation 

coefficients are represented in the angular coordinate whereas the arcs show the CRMSEs. 

 

 
Seasonal averages of CF1, CF2 and CF3 are also compared at the tall tower locations, and the 

differences between those computed with the set of reanalysis datasets are plotted in Figures 5, 

6 and 7. Similarly to Figure 3, none of the reanalysis stands out in any of the target seasons. 

However, we notice that the median of the differences for the MERRA2 near surface winds is very 

close to zero in all the CFs (Figures 5, 6 and 7). Despite this, the range of the differences is as 

wide as the observed for the other datasets, so it cannot be concluded that NASA’s reanalysis 

outperforms the ERA5 wind fields. Concerning also the width of the distribution of the differences, 

we note that CF3 shows the widest range of values reaching up to 0.5.  

 
 

 

 

 



 
Figure 5.- Boxplots summarising the differences between observed (obs) and reanalysis (mod) CF1 seasonally 

aggregated for 77 tall towers in (a) December-January-February, (b) March-April-May, (c) June-July-August and (d) 

September-October-November.   

 

 

 
Figure 6.- Boxplots summarising the differences between observed (obs) and reanalysis (mod) CF2 seasonally 

aggregated for 77 tall towers in (a) December-January-February, (b) March-April-May, (c) June-July-August and (d) 

September-October-November.   

 

 

 

 
 

 



 
Figure 7.- Boxplots summarising the differences between observed (obs) and reanalysis (mod) CF3 seasonally 

aggregated for 77 tall towers in (a) December-January-February, (b) March-April-May, (c) June-July-August and (d) 

September-October-November. 
 
Wind Power Density 

 
Figure 8.- Taylor diagram of the pairwise monthly observed and reanalysis-derived WPDs. Each point corresponds to 

one specific tall tower and reanalysis. Radial dimension represents the model standard deviations normalised by the 

observations’. Pearson correlation coefficients are represented in the angular coordinate whereas the arcs show the 

CRMSEs. 

 



Figure 8 presents the Taylor diagram for the comparison of the WPD computed from the tall 

towers and the observations. In general, reanalyses correlate better with WPD than CF. The 

variability, however, differs substantially from the observed, being underestimated in all cases. 

Even though the 100-metre wind dataset correlates slightly better with the observed WPDs, the 

estimates from the ERA5 surface winds offer the closest results to reality. 

 

 
Figure 9.- Boxplots summarising the differences between observed (obs) and reanalysis (mod) WPD seasonally 

aggregated for 77 tall towers in (a) December-January-February, (b) March-April-May, (c) June-July-August and (d) 

September-October-November. 

 

 

Seasonal averages of WPD are also intercompared by means of box plots in Figure 9. As in 

Figure 8, seasonal averages of WPD are also underestimated by the reanalyses. The widest 

dispersion of differences between observed and modelled WPD is noticed in DJF (Figure 9(a)), 

whereas the narrowest range of values is noticed in JJA (Figure 9(c)). Concerning the reanalyses, 

ERA5 winds show the narrowest boxes, even though the WPD estimates appear systematically 

biased in all seasons. This bias is less appreciable in MERRA2, but the range of differences is 

larger for this reanalysis. 

 

 

 

Conclusions 

 
Global reanalysis datasets are needed in seasonal forecasting for many purposes such as bias 

correction of these predictions as well as their verification. Currently, only the ERA5 and MERRA2 

global reanalysis offer 1-hourly data at relatively fine resolution (0.3º and 0.5ºx0.625º, 

respectively). Nevertheless, some remarks should be made concerning their representation of 

wind speeds, CF and WPD.  

 

Reanalyses hardly reproduce the monthly-averaged wind speeds, and these biases are also 

observed after deriving the CF and WPD indices. Since global reanalyses are provided in a coarse 



grid (31 km of resolution as maximum), they are unable to reproduce local features such as local 

winds or turbulence that may occur at a much finer spatial scales within the grid cell. Nonetheless, 

many wind energy applications can benefit from the reanalysis data, specially at 1-hourly time 

scale. 

 

ERA5 provides better correlations and lower CRMSEs than MERRA2 for the three analysed 

variables. The ERA5 near-surface winds appear like a good approach to derive monthly averaged 

winds and CFs, whereas the ERA5 surface winds offer the best results to compute the WPD. 

Finally, it is also worth noting that the surface wind field datasets, when extrapolated to either 

tower measuring level or the 100-metre height, show systematically higher variability than the 

extrapolation of the near surface winds to the same level. We argued that this excess of variability 

is introduced by the power law approach used in the vertical extrapolation of winds.  
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