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1. Introduction 

 

High-resolution information about future climate is needed for a proper adaptation and mitigation 

of the impacts of the climate change and variability. To obtain climate change information at the 

regional to local scale, different downscalling techniques are applied on GCMs (global climate 

models) outputs. Dynamical downscaling using a regional climate model (RCM) is an example of 

such a technique. The availability and reliability of RCM simulations for Europe has increased rapidly 

in recent years thanks to projects like PRUDENCE, STARDEX, ENSEMBLES and recently 

NARCCAP or CORDEX. However, RCMs feature considerable systematic errors, which hamper 

easy application of RCM results in climate change impact research. 

Since model outputs suffer from systematic errors, it is necessary to correct them to obtain 

meaningful results on the simulated properties of the climate system. Especially for analysis of daily 

data and extreme values (like temperature maxima and minima, precipitation values over given 

thresholds, etc.), here the wrong statistical distribution of a given meteorological element simulated 

by a model may lead to wrong conclusions. To cope with distorted statistical moments of different 

order, generally the whole distribution, different model correcting techniques are applied (list of them 

is given e.g. in Themessl et al., 2012).  

In this contribution we concentrate on validation of RCM’s in the area of the Czech Republic. We 

analyzed 11 experiments coming from pair combination of 5 GCM and 5 RCM available within the 

Euro-CORDEX project (described later).  

For the data processing, the software packages AnClim (Štěpánek, 2008), LoadData and 

ProClimDB (Štěpánek, 2010) were used. They offer complex solution, from tools for handling 

databases, through data quality control to homogenization of time series, as well as time series 

analyses, extreme value evaluation and model output verification and correction. The software is 

available on the web page www.climahom.eu.  

 



2. Data and Methods 

 

2.1. Station data. 

 

For proper validation of RCM outputs and their later correction, proper reference datasets has to be 

used. Quality of reference datasets influences results (quality) of validation and correction of model 

outputs. If station data of high quality exists, such an option is naturally the best one that can be 

chosen. Applying ECA&D (its public version) or gridded E-OBS dataset is suitable in cases when 

proper station data are not available. In our case, we were able to work with station network data 

(coming from the Czech hydrometeorological institute), from which only certain portion is used for 

ECA&D creation and from which then E-OBS dataset is calculated.  

When working with raw station data, first of all they should be subject of thorough quality control. 

Data quality control applicable on large datasets was developed by Štěpánek et al. (2009). The 

automation of the process (preserving good ratio of true and false alarms) has been achieved through 

combination of several methods of temporal and spatial analysis.  

After the erroneous data are removed from the series during the quality control, the series are 

subject of homogenization applying several statistical tests for detection of inhomogeneities and 

found discontinuities are corrected in daily scale (again, several methods are applied to decrease 

uncertainty of the correction estimates). Further details about the homogenization can be found e.g. in 

Štěpánek et al. (2013) or documentation of the software (Štěpánek, 2010). Quality control and 

correction of inhomogeneities have been performed on a daily (sub-daily) basis for all key 

meteorological variables over the territory of the Czech Republic since 1961 (also for neighbouring 

countries, such as the Slovak Republic or Austria, within international projects).  

After the quality control and homogenization, missing values were filled. The calculation of the 

“new” values was based on geostatical interpolation methods, improved by standardization of 

neighbor stations values to altitude of a given location by means of regional regression analysis 

(Štěpánek et al., 2011). Parameters settings of the calculation differ for each meteorological element 

and optimal settings were found by means of cross validation.  

Data quality control, homogenization and filling missing values lead to the creation of the so-

called “technical” series for mean, maximum and minimum temperatures, precipitation totals, sums of 

sunshine duration, relative humidity (mean water vapour pressure) and wind speed. They were 

calculated for 268 climatological and 787 rain-gauge stations of the CHMI network in the 1961–2018 

period and actual values are continually added (for station locations please see Fig. 1). Despite the 

fact that a smaller number of stations was available for some of the studied characteristics (e.g. for 

sunshine duration or water vapour pressure), “technical” series were completely calculated (for 

arbitrary station location or regular gridded network – CZgrid dataset). In this way, we have a 

complex set of meteorological variables for each position of climatological station, which may be 

easily applicable for any climate analysis or impact study in this territory. 

 

2.2. Model simulations 

 

Our analysis of model outputs is based on regional climate model (RCM) simulations prepared 

within the European part of the global Coordinated Regional Climate Downscaling Experiment 

(CORDEX, www.cordex.org). The European domain of CORDEX is covered within the frame of 

http://www.cordex.org/


Euro-CORDEX sub-project (www.euro-cordex.net). Model experiments are performed here with two 

spatial resolutions: 0.44 degree and 0.11 degree. In our contribution we focus only on 0.11 degree 

resolution experiments. Following RCMs have been used in our study: ALADIN53, CCLM4-8-17, 

HIRHAM5, RACMO22E and RCA4. Two of five RCMs were driven by more than one GCM. These 

Euro-Cordex experiments were those first available to broader scientific community (already in 2015, 

compared to about 19 in 2019).  

 

Table 1. Selected Euro-CORDEX experiments of regional and their driving global models.  

RCM Driving GCM Scenarios 

ALADIN53 CNRM-CM5 RCP4.5, RCP8.5 

CCLM4-8-17 

CNRM-CM5 RCP4.5, RCP8.5 

EC-EARTH RCP4.5, RCP8.5 

MPI-ESM-LR RCP4.5, RCP8.5 

HIRHAM5 EC-EARTH RCP4.5, RCP8.5 

RACMO22E EC-EARTH RCP4.5, RCP8.5 

RCA4 

CNRM-CM5 RCP4.5, RCP8.5 

EC-EARTH RCP2.6, RCP4.5, RCP8.5 

HadGEM2-ES RCP4.5, RCP8.5 

IPSL-CM5A-
MR 

RCP4.5, RCP8.5 

MPI-ESM-LR RCP4.5, RCP8.5 

 

 

 
 
Fig. 1. Network of climatological (red squares) and precipitation stations (blue circles) together with positions 
of grid points of 0.11° Euro-CORDEX simulations (black crosses).  

 

 

http://www.euro-cordex.net/


2.3. Bias correction 

 

The climate simulated by numerical models shows systematic deviations from reality (true 

observed climate) which limits their applicability for impact models. Therefore, climate model 

outputs have to be post-processed to match the observed climate (Maraun, 2013, Christensen et al. 

2008). One common way to deal with model errors in climate change impact studies is the “delta 

change approach”. Besides the delta approach, more sophisticated RCM post-processing methods 

have been proposed and evaluated, their list is given e.g. in Themessl et al. (2012). These approaches 

belong to the family of Model Output Statistics (MOS), a concept developed in weather forecasting 

and now commonly used in climate science (Maraun et al. 2010).  

In a comprehensive inter-comparison study of seven DECMs (“empirical statistical downscaling 

and error correction methods”) for daily precipitation from a 10 km resolved RCM, Themessl et al. 

(2011) conclude that quantile mapping (QM) outperforms all other investigated DECM. Distribution 

mapping method was recommended as the best-performing correction method also by Teutschbein 

and Seibert (2013), where various bias correction techniques have been compared (Delta-Change 

Correction, Linear Transformation, Local Intensity Scaling (LOCI), Power Transformation, Variance 

scaling, Distribution Mapping), finding that QM was best able to cope with non-stationary conditions. 

Based on these results, QM was chosen for the bias correction purposes. 

In our approach we come from quantile matching as described in Déqué (2007). It is applied as 

parameter-free (using empirical cumulative density distributions, ecdfs, rather than theoretical 

cumulative distribution functions). An empirical method is recommended over the parametric one 

since the latter one is not robust enough given the limited length of the time period (Gutjahr and 

Heinemann, 2013), and also, using theoretical distribution QM becomes less flexible in its application 

to different parameters and regions as a priori information about the shape of the probability density 

functions is needed (Themessl et al., 2012). 

Based on validation of the QM method within model control runs, we further adopted some 

settings that suit best for the purpose of bias correction of various meteorological elements (including 

precipitation which are difficult to handle on both distribution tails). They are described with more 

details e.g. in Stepanek et al. (2016).  

The QM method was applied on daily basis and for each grid cell / location separately. Correction 

for was performed using to the first (nearest) neighbor.  

 
 

3 Results 

3.1 Comparison of ECVs 

 

As mentioned above, models suffer from biases. Given our knowledge about physical processes in 

atmosphere, computational possibilities etc., results usually have similar problems within the same 

group of models. Kotlarski et al. (2014) summarizes some of these biases evaluated from the 

ERAInterim-driven Euro-CORDEX regional climate models, like predominant cold and wet bias in 

most seasons and over most parts of Europe and a warm and dry summer bias over southern and 

southeastern Europe reflect common model biases. The other well-known issue concerns dry-day 

frequency being systematically underestimated by climate models, the frequency of light precipitation 

events between 0.1 mm/d and 1 mm/d (“drizzling-effect”; e.g. Gutowski et al. 2003),) as well as of 



heavy precipitation events are mostly overestimated by models (Themessl et al., 2012). We confirm 

similar bias patterns in our results for the Czech Republic, as follow from the following text.  

Biases between prediction and reality were analyzed, in detail, mainly for five selected 

experiments. Control run were compared with real meteorological data. For spatial comparison, maps 

with values interpolated into 500m resolution were obtained, individually for each data source (station 

or model grid points). 

 

3.1.1 Air temperature 

 

 
Fig. 2. Temperature bias, difference between original (uncorrected) model and reality, for 5 experiments: a: 

CNRM-CM5_ALADIN (1961-2005), b: EC-EARTH_RACMO (1961-2005), c: EC-EARTH_RCA (1970-2005), d: 

HadGEM2-ES_RCA (1970-2005), e: MPI-ESM-LR_CCLM (1961-2005) 

 

 

Air temperature is underestimated by uncorrected models (Tab. 2). The highest differences were 

observed for the experiment EC-EARTH_RACMO. Average annual temperature is about 2.2°C lower 
than reality. In the spring it is underestimated even about 4°C. Lowest biases were achieved by 

HadGEM2-ES_RCA. The difference from reality is only -0.2°C. Overall for all the five selected 

experiments, the largest discrepancies were found in spring season (Fig. 2).  
 

 
Table 2. Model bias for air temperature (°C) as difference between original (uncorrected) model and reality, 

areal averages for different altitudes 

Altitude in m 

CNRM-
CM5 

ALADIN 

EC-
EARTH 

RACMO 

EC-
EARTH 

RCA 

HadGEM2-
ES RCA 

MPI-ESM-LR 
CCLM 

0-300 -2 -2.46 -1.81 -0.3 -0.7 

300-600 -1.92 -2.21 -1.76 -0.24 -0.66 

600-900 -1.39 -1.92 -1.6 -0.06 -0.43 

900-1200 -0.51 -1.42 -1.19 0.34 0.18 

nad 1200 0.37 -0.4 -0.32 1.23 1.23 

whole CZ -1.83 -2.21 -1.74 -0.21 -0.62 
 

 



Bias analysis was performed also with regards to different altitudes. We chose five levels – up to 

300 m, 301–600 m, 601–900 m, 901–1200 and altitudes above 1200 m. The results are surprising. 

Highest model biases are observed within lower altitudes (up to 300 m), on the contrary for mountain 

regions model simulations are relative non-biased. Two experiments are different, HadGEM2-

ES_RCA and MPI-ESM-LR_CCLM, which show quite accurate results. On the other hand, these two 

experiments in the highest mountains overestimate the temperature (Fig. 3).  

 

 

 
Fig. 3. Temperature bias for 5 experiments: a: CNRM-CM5_ALADIN (1961-2005), b: EC-EARTH_RACMO 

(1961-2005), c: EC-EARTH_RCA (1970-2005), d: HadGEM2-ES_RCA (1970-2005), e: MPI-ESM-LR_CCLM 

(1961-2005). 

 

 

For a selected experiment (EC-EARTH_RACMO22) we tested whether the bias is constant or 

changes over time. Spatial biases for different decades of the control run are shown on Fig. 4. The 

biggest underestimation is observed in case of older values. Bias of about -2.5°C is found for the 

period 1961-1970 (Tab. 3), while bias of only -2°C is found in the last years of the control run (1991-

2005). This means that modeled air temperature increase in the current climate is more rapid than it is 

in reality.  

 
Tab. 3. Model bias for air temperature (°C) as difference between original (uncorrected) EC-

EARTH_RACMO22 and reality, areal averages for the Czech Republic 

Decade average minimum maximum 

1961-1970 -2.46 -4.18 0.38 

1971-1980 -2.27 -4.11 0.66 

1981-1990 -2.1 -3.89 0.84 

1991-2000 -2.09 -3.8 0.97 

2001-2005 -1.9 -3.69 1.28 

 

 



 
Fig. 4. Temperature bias for EC-EARTH RACMO, for indivivual periods (decades). 

 
 

To better assess possible change based on all the available model simulations, from individual 

corrected model outputs an ensemble mean was created and is further worked with. Before creating 

ensemble mean, values of individual experiments were smoothed with 10 year low-pass Gaussian 

filter to get rid of incomparable individual yearly values. 

To comprehensibly estimate change in climate for the whole area of the Czech Republic, simple 

means over all possible grid points were calculated. This is based on assumption that such spatial 

mean estimates are comparable. To answer a possible question about the role of locations density in 

the estimation of such areal average for the Czech Republic, we thoroughly compared results coming 

from several versions of datasets later used for the analysis. We have compared, for 30 years period 

(1981-2010), several characteristics: air temperature, number of tropical days, precipitation sum and 

number of days with precipitation 1 mm and higher. As reference dataset we used areal average based 

on 500m resolution grid layer obtained through geostatistical interpolation, namely regression kriging 

applying dependence of input station data (268 for temperature, 787 for precipitation) on various 

terrain parameters. Further datasets are: 523 grid points of Euro-CORDEX simulations – simple 

average over these values, and averages over 268, reps. 787 station locations. When comparing results 

from these four data sources, the results are practically the same, with difference maximum 0.1°C for 

air temperature or 4% in case of precipitation or number of days.  

 

Fig. 5 shows fluctuations of air temperature for the whole Czech Republic according to original 

and bias-corrected model outputs. As for a level, corrected model outputs are in accordance with 

station measurements (black line). Raw model outputs are about 1°C lower than is reality. Different 

level of raw RCP2.6 values (compared to RCP4.5 and RCP8.5 within control run) is caused by 

different number of available models than is the case for RCP4.5 and RCP8.5, but anyway, after bias 

correction the level is again the same as reality.  

 

 



 
Fig. 5. Fluctuations of annual air temperature according to average of smoothed (10 year low-pass Gaussian 

filter) values of all 11 experiments (stan: reality, corr – bias corrected RCM outputs, model – original model 

outputs). 

 

 

3.1.2 Precipitation sums 

 

Precipitation sums are overestimated by uncorrected model outputs (see Fig. 6). From the selected 

5 experiments, the most moisture conditions are modeled by MPI-ESM-LR_CCLM, its average daily 

precipitation is higher by about 0.65 mm (Tab. 4). On the contrary, almost bias free precipitations are 

simulated by EC-EARTH_RACMO experiment. The rest of the three models overestimated the 

precipitation by about 0.35 mm/day. Spring is more moisture compared to other seasons.  

 

 
Fig. 6. Precipitation bias, difference of original (uncorrected) model and reality, for 5 experiments: a: CNRM-

CM5_ALADIN (1961-2005), b: EC-EARTH_RACMO (1961-2005), c: EC-EARTH_RCA (1970-2005), d: 

HadGEM2-ES_RCA (1970-2005), e: MPI-ESM-LR_CCLM (1961-2005) 
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Tab. 4. Model bias for precipitation in mm/day as difference between original (uncorrected) model and reality, 

areal averages for different altitudes 

Altitude in m 

CNRM-
CM5 

ALADIN 

EC-
EARTH 

RACMO 

EC-
EARTH 

RCA 

HadGEM2-
ES RCA 

MPI-ESM-LR 
CCLM 

0-300 0.41 0.11 0.18 0.12 0.51 

300-600 0.36 0.07 0.33 0.29 0.68 

600-900 0.22 -0.01 0.68 0.67 0.78 

900-1200 0 -0.25 0.97 0.97 0.66 

nad 1200 -0.1 -0.48 0.98 0.98 0.27 

whole CZ 0.34 0.06 0.36 0.32 0.65 

 

 

More precipitation is simulated for Bohemia region than for Moravia (Fig. 7). Spatial differences 

of biases by altitude are not so evident as in the case of air temperature. The precipitation sums in 

lowlands are overestimated especially by CNRM-CM5_ALADIN and MPI-ESM-LR_CCLM 

experiments (Tab. 4). Mountain regions are modeled with higher amount of precipitation in case of 

EC-EARTH_RCA and HadGEM2-ES_RCA experiments. On the contrary EC-EARTH_RACMO 

experiment predicts, for altitude above 600 m, lower precipitation sums than is in reality.  

 

 

 
Fig. 7. Precipitation bias for 5 experiments: a: CNRM-CM5_ALADIN (1961-2005), b: EC-EARTH_RACMO 

(1961-2005), c: EC-EARTH_RCA (1970-2005), d: HadGEM2-ES_RCA (1970-2005), e: MPI-ESM-LR_CCLM 

(1961-2005) 

 

 

Precipitation sums are distinguished by high spatially and temporal variability. This is determined 

mainly by atmospheric circulation, the amount of precipitation depends on the type of synoptic 

situation. Complex orography of the Czech Republic has a significant influence as well. Long-term 

changes in rainfall are not detected. The annual variability is stronger than the trend.  

Prediction of the precipitation sums based on the all 11 experiments show slight increase of about 

7-13 % for RCP 4.5 or 6-16% for RCP 8.5. Higher amount of precipitation are observed by the end of 

the 21st century (Fig. 8). Statistically significant trend (8.3 mm/10 years) is found for RCP 4.5 for the 

period 2061-2100. Emission scenarios 8.5 give statistical significant trend of 16 mm/10 years in the 



period 2021-2060 and 13 mm/10 years in the period 2061-2100. RCP 2.6 supposes increasing of the 

precipitation only in the first period 2021-2060 (14.7 mm/10 years). The biggest difference is 

observed for winter precipitation, whose increase can be up to 35% by the end of the 21st century 

(Tab. 6). On the contrary, the smallest change can be expected in summer precipitation (in summer we 

may expect even decrease of precipitation, even if annual sums are expected to increase).  

Fig. 8 shows fluctuations of precipitation sums for the whole Czech Republic according to original 

and bias-corrected model outputs. Corrected model outputs are in accordance with station 

measurements (black line). Raw model outputs give about 100 mm higher annual precipitation sums. 

Different fluctuations of raw RCP2.6 values (compared to RCP4.5 and RCP8.5 within control run) are 

caused by different number of available models than is the case for RCP4.5 and RCP8.5.  

 

 
Fig. 8. Fluctuations of annual precipitation sums according to average of smoothed (with 10 year low-pass 

Gaussian filter) values of all 11 experiments (stan: reality, corr – bias corrected RCM outputs, model – original 

model outputs). 

 
 

3.1.3 Further meteorological elements 

 

Boxplots of biases in wind speed for the whole area of the Czech Republic for individual 11 RCM 

simulations within period of models control run (till 2005) are shown on Fig. 9. All the models, with 

exception of CNRM CM5_ALADIN53, show positive bias, reality is about 1 m/s lower. The bias is 

larger especially in the last years (marked as wind stilling, with cause still being investigated).  
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Fig. 9. Boxplots of wind speed biases for all locations (the whole Czech Republic) for individual 11 RCM 

simulations within control run (till 2005) 

 

 

Boxplots of biases in relative humidity for the whole area of the Czech Republic for individual 11 

RCM simulations within control run (till 2005) are shown on Fig. 10. Relative humidity is not 

available for all models (unlike specific humidity, but re-calculation to relative humidity and thus 

comparison with station measurements is not easy). Most of the models (except for EC-

EARTH_HIRHAM5) show positive bias. 

 

 
Fig. 10. Boxplots of relative humidity biases for all locations (the whole Czech Republic) for individual 11 RCM 

simulations within control run (till 2005) 
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3.1.4 Problems of some model simulations over the area of Central Europe 

 

Some of the RCMs simulations showed critical biases for historical climate (control run). Here we 

show some examples. For this analysis, 19 simulations (combination of GCMs and RCMs as available 

in 2019), were used (plotted in the Taylor diagram). 

• CNRM-CM5_ALADIN53: minimum temperature shows very low spatial correlations both in 

winter and summer (Fig. 11), and also relative humidity is not well represented (in winter). 

 
 

 
Fig. 11. Taylor diagrams for minimum temperature (DJF – winter – upper diagram, JJA – summer – 

bottom diagram) for original (non bias– corrected) model outputs.  

  



• CNRM-CM5_CLM4.8.17: poor representation of annual cycle for precipitation and low 

spatial correlations for precipitation and solar radiation in summer (Fig. 12).  

 

 
Fig. 12. Taylor diagrams for solar radiation in JJA – summer (upper diagram) and precipitation in 

JJA – summer (bottom diagram) for original (non bias– corrected) model outputs. 

 

 

• RCMs REMO2009 and REMO2015 driven by various GCMs (not listed in the table 1 and not 

used otherwise throughout this contribution, but the results are interesting so they are 

presented here even being beyond scope of this contribution): these RCMs show very low 

spatial correlations for precipitation both in summer (Fig. 12 bottom) and winter (Fig. 13), 

remarkably lower values than other models. Moreover we see lower correlations for solar 

radiation in summer. For REMO2015 we also found problem with maximum temperature in 

summer and at the same time with minimum temperature in winter. 



 
Fig. 13. Taylor diagrams for precipitation in DJF –winter for original (non bias– corrected) model 

outputs. 

 

 

3.2 Comparison of climate indices 

 

3.2.1 Number of days with precipitation above given level 

 

Fig. 
Fig 14. Boxplots over all 11 experiments for number of days with precipitation 1.0 mm and higher (corr – 

stands for bias corrected model outputs, model – stands for original model values), for 30 years (1981-2010) 

and future 20 years periods (beginning of the period is given in the description) and two scenarios RCP 4.5 and 

RCP 8.5 
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Fig 15. Fluctuations of number days with precipitation at least 1 mm (upper), 10 mm (middle) and 50 

mm (bottom) according to average of smoothed (with 10 year low-pass Gaussian filter) values of all 

11 experiments (stan: reality, corr – bias corrected RCM outputs, model – original model outputs). 
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After the bias correction, the results become more consistent in absolute values – initially large 

differences among individual experiments (as seen e.g. on Fig. 14), become more consistent. From 

this we can conclude that for impact studies, where absolute values play an important role (compared 

to climatological analysis usually based only on values change between various periods), bias 

correction is necessary to obtain meaningful results comparable with current station measurements.  

 

Fig. 15 shows fluctuations of number of days with precipitation above given thresholds (1 mm, 10 

mm and 50 mm and higher). As for 1mm precipitation, number of days is over-estimated in model 

outputs. For 10 mm threshold, level of corrected and original model values are in accordance, but for 

20, 30 or 50 mm models give under-estimated results compared to reality. Moreover, while 

precipitation sums or number of days with precipitation 1 mm and more are without (statistically 

significant) trends, number of days with extreme precipitation increases from the past to far future 

(end of this century).  

 

 

Number of tropical days (maximum temperature is 30°C or higher) is underestimated while 

number of ice days (minimum temperature dropped below 0°C are overestimated by models (not 

shown here). 

 

 

Conclusions and outlook 

● Especially for daily values and extremes generally, bias correction of model outputs Is 

necessary for further utilization of such outputs by impact studies 

● While air temperature is underestimated by the models, precipitation sums and number of 

days with precipitation (1mm and higher) are overestimated) within the area of Central 

Europe. On the contrary, number of days with extreme precipitation are underestimated by 

models.  

● Wind speed is overestimated by models, especially in the last years where we see negative 

trend in station observations while there are constant values from the past to future in model 

simulations 

● Sunshine duration (solar radiation) is overestimated by model simulations 
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