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1. Overview 

The goal of WP5 is to use the data developed in WPs 2 and 3 and indices developed in WP4 to 

quantify their variability and change over time, and their link to atmospheric circulation patterns.     

The deliverable 5.2 presented analysis of the INDECIS-ISD climatology, temporal evolution, and 

assessed their Time of Emergence. In this report we explore the relationships between the indices 

and patterns of atmospheric circulation. This covers analysis of the relationships of INDECIS-ISD 

with atmospheric teleconnection indices (Section 2) with an additional focus also on growing 

season characteristics and teleconnection patterns (Section 6) and extension to prediction of 

sectoral indices from atmospheric circulation metrics (Section 7). Links to sectoral impacts are 

further covered through an analysis of how Euro-Atlantic teleconnections affect wind power indices 

(Section 3). In addition, a process-based analysis further outlines the impact of more complex 

circulation metrics associated with blocking high pressure characteristics and their impact on 

sectoral indices (Section 4). These Europe-wide investigations are complimented with a focused 

case study on how atmospheric circulation teleconnections influence precipitation across Calabria, 

a region of southern Italy (Section 5). 
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2. Relationships of INDECIS-ISD with atmospheric teleconnection indices 

Ana Casanueva , Joaquín Bedia, Sixto Herrera, Mª Dolores Frías, Jesús Fernández, Antonio S. 

Cofiño, José Manuel Gutiérrez (University of Cantabria) 

 2.1 Summary 

Climate impact indices, such as INDECIS-ISD, are effective tools to assess local and regional 

sector-specific climate impacts such as droughts, heat waves or wildfires among others. Their 

temporal and spatial variability are therefore impact-relevant and can be related to climate 

oscillations, such as changes in atmospheric patterns. The relationships between impact indices 

and atmospheric patterns can therefore shed light on the mechanisms controlling the variability of 

extreme events. Those links can be analyzed either in temperature and precipitation, but also in 

indices related to precipitation extremes, river flows, snow cover or cereal production (see e.g. 

Rodríguez-Puebla et al. 2007; Carril et al. 2008; Vicente-Serrano et al. 2009; Brands et al. 2013, 

Casanueva et al. 2014). 

INDECIS D51 compiled a list of atmospheric patterns which influence European climate variability. 

INDECIS D52 gave an overview on temporal evolution of the INDECIS-QHDS and INDECIS-ISD, 

including the time-emergence of climate-change signals and relation with atmospheric patterns. 

The UC contribution to D5.3 is focused on the analysis of the relationship between the main Euro-

Atlantic circulation patterns and the variability of a selected subset of INDECIS-ISD. 

In addition, UC  is currently working on the development of an R package for the calculation of 

several INDECIS-QHDS indices and atmospheric patterns, as well as towards its integration within 

the climate4R open-source framework for climate data access and analysis (Iturbide et al. 2019), in 

order to demonstrate the reproducibility and possible integration of INDECIS scientific activities in 

the framework of user-oriented climate services. 

 2.2 Data and Methods 

Data 

E-OBS daily observational dataset (v17) on a 0.5x0.5º regular grid is used to obtain a subset of 

impact indices (INDECIS-ISD) for the period 1950-2017.  It was retrieved from the data services 

provided by University of Cantabria Meteorology Group (UCMG), built on a THREDDS Data Server 

(TDS) by means of the user authorization web application User Data Getaway - Thredds Access 

Portal (UDG-TAP). Data retrieval, further postprocessing and indices calculation were performed 

with the climate4R bundle for climate data analysis and processing (Iturbide et al. 2019). The 

indices (Table 1) span simple indicators expressing, in most cases, threshold exceedances and 

rely on the three primary ECVs, namely precipitation (Pr), minimum temperature (Tmin) and 

maximum temperature (Tmax). They are computed on a seasonal basis (see details in Table 2.1). 

Grid boxes with less than 50% of data in the full period are left blank. Climatological means and 

variability (expressed by the standard deviation normalized by the mean, as percentage) are 

shown in order to give an overview of the selected indices. 

 

http://meteo.unican.es/climate4r
http://meteo.unican.es/udg-tap/home
http://meteo.unican.es/climate4r
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Index 

Code 

Index Name Description Units Seasonal 

agg. fun 

ECV 

RR1 Wet day 

frequency 

Nº of days with Pr ≥ 1 

mm 

Days/season sum Pr 

SDII Simple 

precipitation 

intensity 

index 

Mean wet-day 

precipitation 

mm/day mean Pr 

TR Tropical 

nights 

Nº of days with 

Tmin>20°C 

Days/season sum Tmin 

SU Summer 

days 

Nº of days with 

Tmax>25°C 

Days/season sum Tmax 

FD Frost days Nº days with Tmin< 0°C Days/season sum Tmin 

ID Ice days Nº of days with 

Tmax<0°C 

Days/season sum Tmax 

Table 2.1. Description of considered INDECIS-ISD. 

 

Data for the teleconnection indices is available from the US Climate Prediction Centre (CPC, 

https://www.cpc.ncep.noaa.gov/data/teledoc/teleindcalc.shtml). CPC indices are derived from the 

first 10 Rotated Principal Components (rPCA) of monthly mean standardized 500-mb height 

(hgt500) anomalies. They are associated with the main modes of atmospheric variability in the 

northern hemisphere: NAO, EA, WP, EP/NP, PNA, EA/WR, SCA, TNH, POL, PT (Table 2.2).  We 

additionally consider two teleconnection indices related to sea surface temperature (SST) 

anomalies in the Pacific Ocean, namely NINO3.4 and ONI, available from the National Center for 

Atmospheric Research (NCAR, https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-

nino-12-3-34-4-oni-and-tni). 

The monthly values from 1950 to 2017 are aggregated into mean seasonal values for the sake of 

comparison with the climate impact indices. 

 

 

 

https://www.cpc.ncep.noaa.gov/data/teledoc/teleindcalc.shtml
https://www.cpc.ncep.noaa.gov/data/teledoc/teleintro.shtml
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
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Index 

Code 
Index Name Variable Source 

NAO North Atlantic Oscillation hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

EA East Atlantic Pattern hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

WP West Pacific Pattern  hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

EP/NP East Pacific/ North Pacific 

Pattern  
hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

PNA Pacific/ North American 

Pattern 
hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

EA/WR East Atlantic/West Russia 

Pattern 
hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

SCA Scandinavian Pattern hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

TNH Tropical/ Northern 

Hemisphere Pattern 
hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

POL Polar/ Eurasia Pattern hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

PT Pacific Transition Pattern  hgt500 (or 
z500) 

https://www.cpc.ncep.noaa.gov/data/tel 

NINO3.4 El Niño/Southern 
Oscillation 

SST https://climatedataguide.ucar.edu/climate-
data/nino-sst-indices-nino-12-3-34-4-oni-
and-tni 

ONI Oceanic Niño Index SST https://climatedataguide.ucar.edu/climate-
data/nino-sst-indices-nino-12-3-34-4-oni-
and-tni 

Table 2.2 Description of the teleconnection indices used. 

 

 

https://www.cpc.ncep.noaa.gov/data/tel
https://www.cpc.ncep.noaa.gov/data/tel
https://www.cpc.ncep.noaa.gov/data/tel
https://www.cpc.ncep.noaa.gov/data/tel
https://www.cpc.ncep.noaa.gov/data/tel
https://www.cpc.ncep.noaa.gov/data/tel
https://www.cpc.ncep.noaa.gov/data/tel
https://www.cpc.ncep.noaa.gov/data/tel
https://www.cpc.ncep.noaa.gov/data/tel
https://www.cpc.ncep.noaa.gov/data/tel
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
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Correlation analysis 

The relationship between impact and teleconnection indices is assessed through regression 

models, considering in all cases detrended time series, in order to avoid misleading results due to 

temporal trends. A linear regression is fitted between each teleconnection index (as predictor) and 

each impact index (predictand). The regression coefficient shows the sign and strength of the 

relation between predictor and predictand, i.e. how much the mean of the dependent variable 

changes given a one-unit shift in the independent variable. Statistically significant coefficients (at a 

significance level of 0.05) are shown. 

2.3 Results  

Relationships with teleconnection indices 

Regression coefficients for all 12 teleconnection indices (see Table 2) are analyzed for the six 

climate impact indices (see Table 1). Here we show the most relevant results for each index. The 

four seasons are presented for the precipitation-derived indices, whereas results for the most 

relevant seasons for the temperature indices are included. 

RR1 
The main modes of variability associated with RR1 are NAO, EA, SCA and NINO3.4 in different 

parts of the continent, in agreement with previous literature (e.g. Casanueva et al. 2014). A dipole 

structure is evident when relating winter NAO and RR1 (Fig.2.1): positive phases of NAO favour 

higher frequency of wet days in northern Europe and the British Isles, whereas the opposite 

behaviour is found in southern Europe. In summer, negative correlation is found between positive 

phases of NAO and RR1 in the Atlantic watershed. Some significant negative correlations also 

arise in the intermediate seasons in Central and eastern Europe. 

The most important relationships between RR1 and EA are found in western Europe in winter, in 

the Atlantic watershed in spring and in the British Isles and southern Norway in summer (Fig.8). 

Some negative correlations are found in the eastern Mediterranean area. SCA largely drives the 

frequency of wet days in the Scandinavian Peninsula and northeastern Europe along the four 

seasons (negative correlation, Fig.2.3). RR1 in southern and southwestern Europe are positively 

related to SCA positive phases in summer and the intermediate seasons, respectively. Although 

the effect of Pacific SST anomalies over Europe is limited, el Niño 3.4 phases are related to wetter 

conditions in the Iberian Peninsula in autumn, whereas la Niña events are associated with wetter 

springs (Fig. 2.4). 

SDII 
Regression coefficients for SDII are between ±1 mm/day for all teleconnection patterns. 

Statistically significant values are obtained in winter, in southwestern Iberian Peninsula (negative 

correlation) and north and east of Europe with NAO (Fig.2.5), and in eastern Europe and Norway 

with EA/WR (Fig.2.6). 
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Fig. 2.1 Regression coefficients for RR1 ~ NAO (days/season). Statistically significant values (p-

value < 0.05) are depicted in purple. 

 

 

Fig. 2.2  As Fig.2.1 for RR1 ~ EA. 
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Fig. 2.3  As Fig.2.1 for RR1 ~ SCA. 

 

 
Fig. 2.4  As Fig.2.1 for RR1 ~ NINO3.4. 
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Fig.2.5  As Fig.2.1 for SDII ~ NAO (units of the coefficients are mm/day in this case). 

 

Fig.2.6  As Fig.2.1 for SDII ~ EA/WR (units of the coefficients are mm/day in this case). 
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TR 
Unlike precipitation indices, results for temperature indices are more localized in space and time 

(i.e. season). The number of tropical nights is negatively (positively) related to NAO and SCA (EA) 

in several regions in Spain, Italy and Romania (Figs. 2.7-2.9). 

 

Fig.2.7  As Fig. 2.1 for TR ~ NAO. 

 

Fig.2.8  As Fig.2.1 for TR ~ EA. 

 

Fig.2.9  As Fig.2.1 for TR ~ SCA. 

 

SU 
Dipole structures are also evident for the summer relationships (Figs.2.10-2.13). NAO and EA in 

summer present high correlation (of opposite sign) with the number of summer days in the eastern 

Mediterranean, whereas the opposite is found in the Atlantic watershed. East-west and south-north 

dipoles are found for EA/WR and SCA. Therefore, more summer days in southwestern Europe 

occur under negative NAO, EA/WR and SCA and positive EA. In the intermediate seasons SCA 

and EA/WR have an influence on the number of summer days in the Iberian Peninsula. 
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Fig.2.10  As Fig.2.1 for SU ~ NAO. 

 
Fig. 2.11  As Fig.2.1 for SU ~ EA. 

 

 

Fig. 2.12  As Fig.2.1 for SU ~ EA/WR. 

 

 

Fig. 2.13  As Fig. 2.1 for SU ~ SCA. 
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FD 
Negative winter NAO is associated with larger number of frost days in large parts in Central and 

northern Europe (Fig.2.14), whereas EA has a large influence in the Central and southern parts of 

the continent (Fig.2.15). EA/WR and SCA present larger effects around the Baltic Sea in winter 

(Figs. 2.16, 2.17). These four teleconnection indices also present some association to FD in the 

intermediate seasons. 

 

Fig.2.14  As Fig. 2.1 for FD ~ NAO. 

 

Fig. 2.15  As Fig.2.1 for FD ~ EA. 

 

Fig. 2.16  As Fig.2.1 for FD ~ EA/WR. 
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Fig.2.17  As Fig.2.1 for FD ~ SCA. 

 

ID 
The frequency of ice days in winter is modulated by negative phase of the NAO (Fig.2.18) in large 

parts of the continent. Likewise, negative EA and EA/WR and positive SCA are associated with 

more ID in the southeast, north and east of the continent, respectively (Figs. 2.19-2.21). ID in the 

intermediate seasons in most influenced by negative NAO in Scandinavia and positive EA/WR in 

eastern Europe. 

 

Fig. 2.18  As Fig.2.1 for ID ~ NAO. 

 

 

Fig. 2.19  As Fig.2.1 for ID ~ EA. 
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Fig.2.20  As Fig.2.1 for ID ~ EA/WR. 

 

 
Fig.2.21  As Fig.2.1 for ID ~ SCA. 

 

Also statistically significant trends are found for the teleconnection indices for the period 1950-2017 

(Figs. 2.22-2.26). For the sake of brevity, we focus on the teleconnection indices which show the 

largest relations with the selected INDECIS-ISD. Significant trends (at 95% confidence level) are 

found for the NAO in winter, spring and autumn (Fig.2.22), EA in the four seasons (Fig.35), EA/WR 

in summer and autumn (Fig. 2.23), SCA in spring and summer (Fig.2.24) and NINO3.4 in winter, 

spring and summer (Fig.2.25). 
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Fig. 2.22 Seasonal time series (1950-2017) for the NAO, including the Kendall’s Tau coefficient 

and its corrected p-value and the Sen’s slope. 

 

Fig. 2.23 As Fig. 2.22, for EA. 
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Fig.2.24 As Fig.2.22, for EA/WR. 

 

Fig.2.25 As Fig. 2.22, for SCA. 
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Fig.2.26 As Fig. 2.22, for NINO3.4. 

 

 2.4 Conclusions 

⚫ The teleconnection indices which present the largest influence over climate indices in 

Europe are NAO, EA, SCA and EA/WR, with a seasonal- and region-dependent effect. 

⚫ Oceanic indices such as el Niño3.4 show little impact on the European climate, except for 

wet-day frequency in the Iberian Peninsula (in agreement with Rocha 1999, Casanueva et 

al. 2014), which has been found to be a potential source of conditional predictability in the 

context of seasonal forecasts (Frias et al. 2010). 

⚫ The largest observed trends concerning teleconnection indices correspond to NAO 

(especially winter NAO) and EA, which are closely related to precipitation-derived indices 

and cold extremes in most continental Europe, and more locally associated with 

temperature-derived (hot extremes) indices in the Mediterranean basin. 

⚫ In this work the relationships between climate indices and concurrent teleconnections are 

shown. Lagged teleconnections might additionally shed light on the mechanisms controlling 

the variability of extreme events and will be further analyzed in this WP. 
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 2.5 Software development 
A large effort within INDECIS WP5 has been devoted to the development of an R package that 

allows the calculation of teleconnection patterns, thus setting the ground for new windows of 

opportunity within INDECIS works. In particular, the representation of atmospheric patterns by 

climate models (e.g. in a seasonal forecasting context) and their relations with climate impact 

indices will be further evaluated in future INDECIS deliverables (D63).  

climate4R.indices is an open-source R package included in climate4R framework for climate data 

analysis and processing (Iturbide et al. 2019). It allows the calculation of climate impact indices 

(such as number of frost days, hot days, etc.). An updated version of the package, developed in 

the frame of INDECIS, offers also the possibility of calculating atmospheric indices. In particular, 

the CPC indices and ENSO indices described in Table 2 are available. Further developments will 

include other atmospheric patterns such as weather typing techniques. The code can be found in a 

GitHub repository (see https://github.com/SantanderMetGroup/climate4R.indices/tree/devel for the 

latest version). The code can be found in the public climate4R.indices package repository 

(https://github.com/SantanderMetGroup/climate4R.indices/tree/devel for the latest  version).  

Worked-out examples of several INDECIS-QCHDS and INDECIS-ISD calculations are also 

available in the package wiki (https://github.com/SantanderMetGroup/climate4R.indices/wiki). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://meteo.unican.es/climate4r
https://www.cpc.ncep.noaa.gov/data/teledoc/teleintro.shtml
https://github.com/SantanderMetGroup/climate4R.indices/tree/devel
https://github.com/SantanderMetGroup/climate4R.indices/tree/devel
https://github.com/SantanderMetGroup/climate4R.indices/wiki
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3. Impact of Euro-Atlantic teleconnections in wind power indices  

Llorenç Lledó, Jaume Ramon Gamon 

 3.1 Objective 

The aim of this section is to evaluate the existing correlations between (1) the near-surface wind 

speeds and wind-energy indices, i.e. Capacity Factor (CF) and Wind Power Density (WPD), and 

(2) the most relevant teleconnection indices in the Euro-Atlantic region. 

 3.2 Methods 

Four atmospheric patterns and its associated teleconnection indices are derived from the four main 

modes of variability in the Euro-Atlantic region. These four Euro-Atlantic Teleconnections (EATC) 

are referred to as North Atlantic Oscillation (NAO), East Atlantic (EA), East Atlantic/Western Russia 

(EA/WR) and Scandinavian pattern (SCA). The four EATC patterns and indices have been 

computed from ERA5 500 hPa geopotential height fields employing a Rotated EOF (REOF) 

analysis over the Euro-Atlantic domain [90ºW-60ºE; 20ºN-80ºN]. Further details on the 

computation of these variability modes and the obtained patterns for each season can be found in 

Lledó et al. (2020) or S2S4E (2019). 

The EATC indices have been correlated against station data measured at 17 tall towers distributed 

over a region in northern Europe [11ºW-37ºE; 47ºN-70ºN], which concentrates an important part of 

the installed wind power capacity in Europe. The set of tall towers is included within the Tall Tower 

Dataset (Ramon et al., 2020), and they measure wind speeds at heights ranging from 10 to 200 

meters above the ground. In this study, only wind speeds measured at the nearest 100-metre level 

(which is also the typical height where modern turbine hubs are located) in each tall tower are 

used. All the time series span at least 6 years within the 1980-2017 period. 

In addition to wind speed, we select wind-energy indices that are of interest to the wind power 

sector. Capacity Factor (CF) and Wind Power Density (WPD) have been computed at the 17 tall 

tower locations. Capacity factors have been computed for three different turbines suitable for high, 

medium or low wind speed conditions (CF1, CF2 and CF3).  To this end, three power curves from 

three different turbine classes according to the IEC-61400-1 standard have been employed. CFs 

are derived from the nearest 100-metre tall tower winds, which are converted into power 

production according to the methodology described in D6.2. In the computation of the WPD, the 

same hub-height winds are used, and the air density is assumed to have the constant value of 1.22 

kg/m3. We note that temperature, pressure and relative humidity data (variables on which air 

density depends) are not always available in the Tall Tower Dataset, and no quality-control has 

been performed in the cases where they are. Therefore, a fixed value has been used for this 

parameter. Both CF and WPD indices are computed using hourly wind speed data and then 

averaged into seasonal values. Finally, seasonal anomalies have been computed with respect to 

the mean value obtained from each tower’s available period. 

Additionally, the experiment has been repeated using the 100m wind speeds from ERA5 for the 

1980-2017 period in northern Europe, and used as a background to complete the large-scale 

picture of correlations where towers are not available. In this case, the reference period in which 

anomalies are computed is 1980-2017. 
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 3.3 Results 

Results are presented here only for the boreal winter (December-January-February, DJF). Results 

for the other season are similar so they are not shown here to avoid repetition.  Figures 3.1, 3.2 

and 3.3 show the correlations between the four EATC and the hub-height winds, CFs and WPD 

measured at the set of tall towers in northern Europe. In the case of CF, results for CF1 are 

representative for the CF2 and CF3 so that the last two are not included for discussion in the report 

to avoid repetition. 

 

Figure 3.1.- Correlation coefficient between the teleconnection indices of the four main EATC 

indices and 1) the hub-height winds from the tower winds (points) and 2) the ERA5 reanalysis 100-

metre winds (background). 

 

Positive correlations between the NAO index and the three parameters are observed over the 

British Isles, North Sea, Scandinavia, northern Germany and the Baltic Sea countries. The 

correlation coefficients reach values of 0.8. Correlation coefficients at the tall towers do agree with 

the ERA5 correlations, being in some cases above 0.8. On the other hand, negative correlations in 

the region are noted for SCA, with values below -0.8. Similar values to those observed for the 

reanalysis are noted in most of the 17 tall tower locations.  

Complementary correlation patterns are displayed for EA and EA/WR. Whereas EA shows 

negative correlations in the northernmost area and positive values in the southwest corner, the 

EA/WR depicts the positive correlations in northern Europe and the negative over the North Sea 

region. We also note a stripe from the northern part of the North Sea through mainland eastern 

Europe where there is no correlation between EA or EA/WR and the three parameters. Most of the 

towers in this band also display close-to-zero correlation values, thus agreeing with the ERA5 data. 
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Figure 3.2.- Correlation coefficient between the teleconnection indices of the four main EATC 

indices and 1) the CF1 (top left), CF2 (top right) and CF3 (bottom) computed from the tower winds 

(points) and 2) derived from the ERA5 reanalysis 100-metre winds (background).  
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Figure 3.3- Correlation coefficient between the teleconnection indices of the four main EATC 

indices and 1) the WPD computed from the tower winds (points) and 2) derived from the ERA5 

reanalysis 100-metre winds (background). 

 

Overall, correlations at the tall tower locations do agree with the ones depicted by the ERA5. 

However, there are some specific cases where discrepancies between the two datasets are noted. 

This is the case, for instance, of the correlations with the three parameters and the EA/WR in the 

North Sea. Even though the ERA5-derived parameters correlate negatively with the EA/WR, some 

locations show zero or even positive correlations with the mentioned EATC. This is explained by 

the short length of the tall tower series, which is in some cases below 10 years.  

 

 3.4 Conclusions 

There exists correlation between the four EATC indices and the hub height wind speeds, CF and 

WPD in northern Europe, and all three parameters show similar patterns and values of correlation. 

Tall tower series do confirm the correlation patterns depicted by the ERA5-derived parameters of 

interest, although tower series are relatively short (sometimes spanning from 6 to 10 years) and 

local wind phenomena are not taken into account in the reanalysis. Positive phases of NAO and 

EA/WR increase winds, CF and WPD in northern Europe, and so does the wind power production. 

Conversely, SCA and EA reduce the wind power production in the previously mentioned regions, 

so we can expect less production. 

In this regard, accurate seasonal forecasts of the EATC indices will allow anticipating periods of 

higher-than-normal or below-than-normal wind energy production, and thus, scheduling activities 

accordingly (see D6.3). 
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4. Influence of blocking high pressure characteristics on INDECIS 
variables 

Pedro M. Sousa, Ricardo M. Trigo 

 

 4.1 Summary 

Blocking high pressure systems are large-scale atmospheric circulation patterns with 

meteorological impacts that vary across regions and seasons, depending on the blocking location, 

spatial characteristics and temporal length. While blocking episodes are an important component 

of intra-seasonal and inter-annual variability at mid-latitudes, particularly in Europe, previous 

studies have mostly focused on characterizing European blocking impacts on either winter or 

summer seasons. A characterization of Euro-Atlantic blocking occurrence within different 

longitudinal sectors (Atlantic, European and Russian) was performed, followed by a 

comprehensive analysis of seasonal impacts on temperature and precipitation regimes. We 

distinguished high-latitude blocking from sub-tropical ridges, which do not require a wave-breaking 

occurrence as blockings do, although they are frequent precursors of wave-breaking, which may 

lead to blocking.  

This distinction clarifies that most extreme heat episodes in southern Europe and Mediterranean 

areas should not be attributed to blockings, but rather to ridges. In central and northern areas of 

the continent, both regimes are responsible for warm conditions in summer, due to enhanced 

radiative heating and increased subsidence. During winter, blocking and ridges lead to opposite 

temperature responses. Blocking reinforces cold northerly advection in its eastern flank, thus 

promoting European cold winter spells, especially those located in the eastern Atlantic and western 

Europe, while mild Atlantic flows associated to ridge patterns result in warmer conditions. 

Regarding the impacts on precipitation, blocking and ridges are associated with a marked north-

south dipole for the three considered longitudinal sectors of occurrence. While blocking patterns 

force a split of the storm-track (Trigo et al., 2006), ridges are associated with a stronger zonal flow 

at higher latitudes. Thus, negative (positive) precipitation anomalies during blocks occur at higher 

(lower) latitudes. Enhanced atmospheric instability and cyclonic activity south of blocking centres 

relate very well with increased rainfall in southern Europe, including Iberia, where torrential 

regimes are more relevant in the precipitation totals. This dipole is reversed during ridges, which 

lead to dry conditions in southern Europe. The seasonal analysis further reveals that winters 

characterized by high frequencies of blocking (ridge) occurrence present above (below) average 

snow covered soils. 

  

4.2 Data and Methods 

Data 

The E-OBS daily dataset (Haylock et al. 2008) was used to obtain a surface responses and 

impacts from blocking/ridge patterns occurring in distinct Euro-Atlantic sectors. This European 

land-only daily high-resolution gridded dataset is accessible throughout the European Climate 

Assessment and Dataset (ECA&D), and is available on a grid with a horizontal resolution of 

0.25°×0.25°, based on the interpolation of daily observations from meteorological stations. Despite 
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the overall good quality of this dataset we must acknowledge that this dataset has caveats in areas 

where the spatial distribution of stations is sparser, such as biased and over smoothed 

precipitation fields in some cases, as well as possible effects in extremes. 

The NCEP/NCAR reanalysis dataset (Kalnay et al., 1996), on a horizontal resolution of 2.5°×2.5° 

and relying on daily fields of the 500hPa geopotential height (Z500) was used to compute: i) 

blocking events (as in Barriopedro et al., 2006); ii) ridge events (as in Sousa et al., 2017a,b).  

Methods 

The methodology for the catalogue of high-latitude blocking days (hereafter only referred as 

blocking) was developed by Barriopedro et al. (2006). The algorithm is an adapted version of the 

Tibaldi and Molteni (1990) index based on the reversal of the meridional Z500 gradient around the 

typical latitudes of the extra-tropical jet stream. It further imposes spatial (minimum longitudinal 

extension of 12.5º) and temporal (minimum duration of 5 days) criteria to account for the 

characteristic spatio-temporal scales of blocking. The algorithm also enables the characterization 

of useful daily parameters, such as the location of the blocking centre, the intensity or the spatial 

extension. Three non-overlapping blocking sectors covering the Europe and the eastern Atlantic 

are defined. More specifically, daily blocking occurrences are assigned to one of the following 

spatial sectors according to the location of their blocking centres (Figure 1): ATL (30ºW–0º), EUR 

(0º–30ºE) and RUS (30ºE–60ºE). 

 

Figure 4.1 - Geographical representation of the considered sectors for blocking location (thick 

black frames): Atlantic (ATL) – from 30ºW to 0º; European (EUR) – from 0º to 30ºE; Russian (RUS) 

– from 30ºE to 60ºE. Each of these sectors was also sub-divided into two smaller 15º longitude-

wide sub-sectors (west and east, dashed black lines). Magenta boxes identify areas for regional-

scale assessments. 

The catalogue of sub-tropical ridge days (hereafter only referred to as ridges), we followed a 

similar methodology as in Santos et al. (2009), which is based on daily anomalies of the Z500 field. 

In order to compare it with the blocking catalogue, we also classified ridge occurrence into the 

same three sectors (ATL, EUR and RUS). Furthermore, each sector is split into two halves: south 

(30ºN–50ºN) and north (50ºN–70ºN). These latitudinal bands are used for winter and, to 
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accommodate the annual cycle, they are shifted 5º northward for summer. This partition enables 

classifying ridges as strong Z500 positive departures in sub-tropical and mid-latitudes that do not 

extend significantly northwards, thus avoiding overlapping days between blocking and ridge 

patterns. For each grid point, we computed Z500 departures for each specific day, and a 30-day 

running threshold based on the 80th percentile of the daily Z500 series. We then obtained, on a 

daily basis and for each longitudinal sector, the percentage of area above that threshold in its 

northern and southern halves. To classify a ridge day in one of the three considered longitudinal 

sectors the following criteria are employed: 1) at least 75% of the area in the southern half is above 

the threshold; 2) less than 50% of the area in the northern half is above the same threshold. These 

percentages and thresholds were tested and calibrated in order to avoid overlaps between 

blocking and ridge dates, and furthermore to obtain climatological ridge frequencies comparable to 

previous studies (e.g. Santos et al. 2009).  

  

4.3 Results 

Blocking and ridge climatology 

The classification of blocking/ridge events according to their location provides a simple and 

objective way of grouping blocking and ridge days (and consequent impacts) in each sector and 

season. The winter and summer composites of Z500 anomalies for blocking and ridge days of 

each sector are shown in Figure 2. Overall, blocking and ridges display a clear difference in the 

latitude of their maximum Z500 anomalies. The composites for blocking days show an omega-like 

structure, which is distinguishable from the non-wave-breaking pattern that is evident in the 

composites corresponding to days of ridge. Absolute anomalies are larger in winter, and for 

blocking regimes (Figures 4.2a-c). During winter, around one third of the days comprises blocking 

occurrence in at least one sector of the Euro-Atlantic region, while summer frequencies are 

smaller, particularly over the ATL sector (Figure 2g). It is worth noting that some events contribute 

to the composites of more than one sector during their lifecycle (Sousa et al., 2017a). Ridge 

frequencies are more equally distributed throughout the three sectors and seasons, with closer 

values to those of blocking during summer. The largest Z500 anomalies under ridging patterns are 

found for ATL and EUR ridges in winter (Figures 2d-e). The positive anomalies of Z500 during 

blocking and ridge regimes are often accompanied by negative anomalies, but much less 

pronounced. The most relevant negative Z500 anomalies occur southwards (northwards) of the 

blocking (ridges) centres, mainly for ATL structures in winter (Figures 2a and 2d). 
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Figure 4.2 - Composites of the daily anomalies (shaded areas) and absolute values (contours) of 

500 hPa geopotential height for blocking centres and ridges in each sector, during winter (upper 

panels, a-c and d-f, respectively) and summer (lower panels, g-i and j-l, respectively). All values 

are in gpm and the thick line represents the 5500 isohypse (the thinner contours are separated by 

50 gpm 

 

Impacts in near-surface temperature 

Composites for the maximum and minimum T2m anomalies (TX and TN) were computed for 

blocking/ridge patterns, as shown in Figures 4.3-4.4.  
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Figure 4.3 - Composites for blocking and ridge days occurring in each sector (ATL, EUR and RUS) 

of winter 2 meters above ground maximum (upper panels – TX; a-c and d-f, respectively) and 

minimum temperature (lower panels – TN; g-i and j-l, respectively) anomalies (in ºC). Only 

statistically significant anomalies at 5% significance level are depicted. 

 

The responses in TN and TX are generally coherent for all sectors and regimes during winter 

(Figure 3) and reveal highly contrasting patterns between blocking and ridges (Figure 3a-c versus 

3d-f). While during blocking most of Europe experiences well below average temperatures, ridge 

days are characterized by extensive above average temperatures. Negative anomalies exceeding -

3ºC tend to occur southward and eastward of the blocking centres, with ATL blocking (Figure 3a) 

revealing the largest widespread signal over the continent. During blocking episodes, strong 

positive temperature anomalies are found in land areas under the highest Z500 anomalies (Figure 

2), i.e. northern half of Scandinavia for EUR blocks (Figure 3b) and northern Russia and eastern 

Scandinavia for RUS blocks (Figure 3c). Conversely, winter ridges in both ATL and EUR sectors 

(Figures 3d-e) are responsible for anomalously warm conditions in almost all regions of Europe. 

These anomalies are particularly striking for EUR ridges (Figure 3d), when Central Europe 
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experiences positive TX anomalies reaching up to 7ºC. There are some areas on the ridge’s 

eastern and western flanks that experience slightly below average temperatures, mainly in 

Mediterranean regions. This is particularly noteworthy in Turkey during EUR ridges (Figure 3k), 

though these negative anomalies are smaller in magnitude and spatial extension than their positive 

counterparts. 

 

 

Figure 4.4 - Same as in Figure 4.3, but for summer. 

Summer temperature anomalies (Figure 4.4) are more spatially confined than in winter and the 

opposite temperature response to blocking and ridge patterns is no longer observed (Fig. 4.3). In 

the case of blocking systems, positive anomalies are again cantered under the maximum Z500 

anomaly area, but now affecting larger areas. In particular, during EUR (RUS) blocking, extensive 

areas of Central Europe and Scandinavia (Eastern Europe and Russia) experience anomalously 
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warm conditions, with TX anomalies >5ºC, as seen in Figure 4.4b (4.4c). Temperature anomalies 

for ATL blocking (Figure 4a) are much less pronounced. As in winter, negative anomalies are 

found in the southern and eastern flanks of blocking systems, but they are small in magnitude, and 

mostly restricted to TX. Still, southern areas of Europe (e.g., Iberia, Balkans) display negative 

temperature anomalies associated to blocking in both winter and summer. 

Summer ridges are associated with above normal temperatures over a more confined area than in 

winter. In particular, they do not have significant effects in temperature over northernmost areas of 

Europe during this season. The lack of opposite signed responses to blocking and ridges during 

summer is evident in some regions, such as Central Europe or Russia, which experience above 

average surface temperatures under both regimes, albeit at different latitudes. On the contrary, in 

southernmost areas, particularly the Iberian Peninsula for ATL regimes (Figures 4.4d and 4.4a), 

positive temperature anomalies during ridge days tend to be replaced by negative anomalies 

during blocking days. Furthermore, summer temperature anomalies over southern Europe critically 

depend on the specific location of ridge structures. For detailed regional changes in temperature 

distributions and other related indices can be found in Sousa et al. (2017b). 

Impacts in precipitation 

The precipitation anomalies due to the presence of blocking patterns (Figure 4.5) clearly show that 

these systems lead to well below average precipitation in a wide region under direct influence of 

the anticyclonic circulation. Very significant decreases are recorded in northern Europe near the 

blocking centres, which correspond to an almost complete cease of precipitating days. On the 

other hand, the increase in precipitation in southern areas of Europe, as well as in the Atlantic strip 

of Scandinavia matches well with the negative Z500 anomalies, which arise northward and 

southward of blocking systems (as shown in Figure 4.2). These positive precipitation anomalies 

shift eastwards with the considered blocking sector, thus following the relative west-east migration 

of the maximum Z500 positive anomaly (blocking centre). Throughout the year, the widest positive 

anomalies tend to be found for ATL blocks, during which a large portion of Iberia, Italy, and the 

Balkans region experience wetter than usual conditions. In particular, daily precipitation rates in 

southeastern Iberia almost double. When blocked conditions prevail, precipitation losses in the UK 

and central Europe are quite striking throughout the year. Summer precipitation responses often 

embrace lower spatial extensions; however, in some regions such as the northernmost countries 

and Russia–where precipitation in form of snow is often recorded in colder months–the summer 

deficits represent the largest changes. 
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Figure 4.5 - Seasonal composites for the differences in absolute anomalies of daily precipitation 

(mm/day) between blocking and strong zonal flow patterns in the ATL (left column), EUR (central 

column) and RUS (right column) sectors. Only statistically significant anomalies at the 5 % level 

are shown. 

 

Similarly to the temperature anomalies (particularly during winter) presented previously, the 

precipitation changes during ridge days (Figure 4.6) are essentially opposite to those found for 

blocking days (Figure 4.5). Consequently, ridge patterns are associated to well below average 

precipitation in most of southern areas, where the maximum geopotential height anomalies of the 

ridge structure are located (see Figure 4.2). The exception can be found during RUS ridges, which 

are located sufficiently to the east to still allow the penetration of Atlantic frontal systems towards 

the Mediterranean area. It should be noted that ridge patterns tend to enhance zonal flow 

northwards, thus explaining the positive rainfall anomalies at higher latitudes, contrarily to the very 

striking drying pattern found for southern Europe. A more detailed characterization of changes in 

precipitation distributions at the regional scale can be found in Sousa et al. (2017a) 
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Figure 4.6 - Seasonal composites of daily precipitation anomalies (%) in Europe for ridges in the 

ATL (left column), EUR (central column) and RUS (right column) sector. Only statistically 

significant anomalies at the 5 % level are shown (two-sample Kolmogorov-Smirnov test). 

 

 4.4 Data availability 

Blocking and Ridge catalogues 

The catalogues computed for blocking and ridge days, computed using the NCEP reanalysis, are 

available in their full content (with blocking/ridge metrics, such as extension, intensity, etc.) for 

different reanalysis datasets (NCEP, ERA-Interim, 20CR, ERA20C), and also in summarized 

simple “.txt” files, containing simply a list of days where each one of these regimes affects each 

one of the regional sectors presented in Figure 1. In fact, these summarized files provide central 

locations for blockings and ridges in finer 15º longitudinal sectors: i) ATLW (30ºW-15ºW); ii) ATLE 

(15ºW-0ºW); iii) EURW (0ºE-15ºE); iv) EURE (15ºE-30ºW); vi) RUSW (30ºE-45ºE); vii) RUSE (45ºE-

60ºE). 

In Table 4.1, an example of the summarized catalogue for ridges affecting the European sectors 

(EURW and EURE) is presented. All summarized catalogues for each of the patterns, and for each 

sub-sector, will present the same format (yyyy / mm / dd). 

All these complete/summarized catalogues can be provided by us for the datasets referred above. 
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Table 4.1 – List of days where a ridge was present over the European sectors (0ºE-30ºE) during 

the 2010 summer, according to the NCEP reanalysis. 

EURW ridges EURE ridges 

yyyy mm day yyyy mm day 

2010 6 6 2010 6 11 

2010 7 4 2010 6 12 

2010 7 7 2010 6 16 

2010 7 8 2010 7 12 

2010 7 9 2010 7 15 

2010 7 10 2010 7 18 

2010 7 11 2010 7 23 

2010 7 16 2010 8 1 

2010 7 18 2010 8 2 

2010 7 19 2010 8 15 

2010 8 20 2010 8 16 

2010 8 21 2010 8 21 

2010 8 22 2010 8 22 

 

 4.5 Conclusions 

- The disentanglement of high-latitude blocking and low-latitude subtropical ridges is crucial 

to comprehend a large part of surface impacts in variables such as temperature and 

precipitation (and other derived), as these patterns reveal a north-south dipole. 

- Blocks tend to be the main driver for extreme cold winter events throughout most of 

Europe, while ridges relate to well above average temperature conditions and mild winters; 

- During summer, both patterns related to warm events, however, in Mediterranean areas, 

ridges are the pattern responsible for extreme heat events; 

- Rainfall in Southern Europe is strongly affected by these patterns, as strong ridges lead to 

extremely dry conditions, with almost complete absence of rainfall for prolonged periods; 

- On the other hand, while blocks tend to cause drier conditions in Central/Northern Europe, 

they are associated with increased instability and increased frequency of extreme 

precipitation events in Southern Europe; 

- Further analysis of more indices may and should be performed regarding the impacts of 

these patterns, at several time-scales and regional scales for further sensibility tests; 

- Links with other atmospheric circulation features (e.g. Atmospheric Rivers) should be 

crucial for a deeper understanding of the role that atmospheric blocking plays over the 

European climate, and how it will relate with future changes. These will be explored in the 

short-term. 
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4. A local analysis of teleconnections: a case study for Calabria 

(Southern Italy). 

Roberto Coscarelli, Tommaso Caloiero, Giulio Nils-Caroletti 

4.1 Overview 

 

Teleconnection indices provide a numerical evaluation of the state of major circulation 

patterns (Glantz, 1994). They allow an easy way to quantify and measure teleconnections 

and their influence on local weather and climate through the use of statistical approaches, 

for instance like various correlation methods. Among the most used approaches is the 

comparison of seasonal teleconnection patterns with seasonal variables, e.g. seasonal 

cumulated precipitation. A teleconnection index is thus compared to the precipitation at a 

grid point or at a weather station. 

However, one of the main limitations of this method is its low statistical significance. If we 

consider, for instance a 30-years period (the usual time frame for climate analysis), we 

have only 30 values over which correlation is calculated.  

In the following report, we present an alternative approach that aims to improve statistical 

significance through the use of data from grid points or gauge stations all belonging to the 

same climatic zone. Although this approach has been developed for a scenario of 

precipitation over Calabria (southern Italy), this is a general method that can be reproduced 

for any variable for any area of Europe, as long as local climates/micro-climates regional 

boundaries are available. 

 

4.2 Methodology 

 

This method builds on the premise that large scale influences over a small region 

characterized by the same climatic pattern will be, at first approximation, very similar. If we 

take into account precipitation, for instance, various studies have shown that in many 

cases, especially at mid-latitudes, while orography and local wind patterns can influence 

the distribution of precipitation, these will work to modify a general large scale moisture 

transport which is essentially the same for a certain region (e.g., Smith and Barstad, 2004). 

This is especially true for orographic precipitation, but local features are also prominent in 

determining the formation of local convective clouds. 

 

Given this premise, for each time step (i.e., a season or a month) we can consider the 

measure taken at every station or grid point belonging to the same local scale region with 

the same climate as an independent measure of the same quantity. 

For instance, if we have five stations over a region, we will have for each time step five 

measures instead of one, changing the number of measures used in correlation studies 

over a 30-years time frame from a mere 30 to 150, and greatly increasing the statistical 

significance of our results. 

 

For our case study, we used 79 rain gauges in Calabria (southern Italy), subdivided into 5 

distinct homogeneous areas, characterized by different climatic conditions (Brunetti et al. 

2012). The subregions were obtained through the Principal Component Analysis, including 
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Varimax Rotation of the Principal Components, applied to the correlation matrix of daily 

records, thus obtaining five Rain Zones (RZs). Specifically, the first five Empirical 

Orthogonal Functions on the western, Tyrrhenian side, which explained 90% of the total 

variance, led to the identification of the North-Western Zone (T1) and the South Zone (T2). 

On the eastern, Ionian side, the North Zone (I1), the Central Zone (I2) and the South Zone 

(I3) were identified (Figure 1). 

 

We compared the monthly and seasonal cumulated precipitation from 1981 to 2010 with 7 

teleconnection indices indicated as the most relevant for European climate (Deliverable 

5.1). The teleconnection indices used were NAOI (North Atlantic Oscillation index (see e.g., 

Barnston and Livezey, 1987; Lamb and Peppler, 1987), MOI (Mediterranean Oscillation 

index; Conte et al., 1989; Palutikof et al., 1996), ONI (Oceanic Niño index, a measure of El 

Nino-Southern Oscillation, ENSO; Ropelewski and Halpert, 1996), WeMOI (Western 

Mediterranean Oscillation index; Martin-Vide and Lopez-Bustins, 2006), EA (East Atlantic 

pattern index; Barnston and Livezey, 1987), EA/WR (East Atlantic/West Russian pattern 

index; introduced as Eurasia-2 in Barnston and Livezey, 1987) and SCAND (Scandinavian 

pattern index; introduced as Eurasia-1 in Barnston and Livezey, 1987). 

 

We compared monthly teleconnection indices, from the current month and from all the 

previous 11 months, with monthly cumulated precipitation. We also compared seasonal 

teleconnection indices for the four previous seasons with seasonal cumulated precipitation. 

It was also possible to compare seasonal teleconnections with monthly precipitation. 

 

The correlation technique used was Pearson correlation. The significance threshold was 

set to 95%. Only correlation values with significance over the threshold were taken into 

account for the results. 

 

5.3 Results 

 

       Seasonal teleconnection indices vs seasonal cumulated precipitation 

 

The most used correlation studies compare seasonal indices with seasonal cumulated 

precipitation. In Table 5.1, the highest correlation values for each season-season 

combination are shown. Results show that all teleconnections except ENSO are especially 

relevant to the five climate regions. A few indices were particularly relevant: EA for the Ionio 

1 region; MOI for the Ionio 2 and Ionio 3 Rainfall Zones; WeMOI, EA and MOI on the 

Tirreno 1 RZ; NAO, WeMOI and EA for the Tirreno 2 RZ. 

 

Three-months teleconnection indices vs monthly precipitation 

 

Correlation results for three-months averaged indices against monthly precipitation are 

shown in Table 5.2. The year was broken down into three-month periods that didn’t equate 

with stations, but were instead taken as the previous three months (current month included) 

and then the following three-month periods (from 3 to 5 months back, 6 to 8 months back 

and 9 to 11 months back). 

 

The NAO and MOI emerged as the most relevant teleconnection indices for the Ionian 
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rainfall zones, both in magnitude and in frequency. Contributions from ENSO and EA were 

not negligible either in the Ionio 1 RZ; however, it must be pointed out that they were 

relevant for the May-September months which have the least precipitation, and the 

correlation never topped 0.3 in magnitude. EA/WR was important for Ionio 2 and WeMOI 

for Ionio 3. 

 

For the west coast RZs, MOI was relevant to precipitation from January to April; EA/WR 

and WeMOI were also important teleconnections for Tirreno 1, while relevant correlations 

with precipitation in Tirreno 2 was also found with NAO (October, December) and ENSO 

(November). 

 

Monthly teleconnection indices vs monthly cumulated precipitation 

 

At last, we compared monthly precipitation with teleconnection indices from the current 

month and back for the other 11 previous months (examining thus a full year, including 

current month; Table 5.3). 

As the number of correlation products is huge, we examined the number of instances in 

which each teleconnection index has the strongest correlation to monthly precipitation, and 

in how many of these instances the correlation is strong (i.e., equal or above 0.4). This is 

shown in Table 4. From this examination, the Mediterranean Oscillation emerges as the 

most important teleconnection for the various Calabrian climate regions. The North Atlantic 

Oscillation is often represented, although its magnitude rarely rises above 0.4. 

We also performed this examination taking into account an extended period from 1951 to 

2010, to determine whether there as a change in teleconnection patterns during the last 

sixty years. What emerged (Table 5.5) is that teleconnections seem to have become more 

correlated precipitation in Calabria in general, although the proportion of relevant 

correlations with precipitation among teleconnections remains roughly the same. Thus, we 

searched for an explanation to this finding by calculating also the 1951-1980 results for the 

correlation and comparing the relevant teleconnections between the two time periods (Table 

5.6). The changes seen between the 30-years time frames mean that the 1951-2010 

correlations seem weaker because results from the two time periods cancel out over the 60-

years correlation analysis. 

A possible explanation for the changes is that the change in local precipitation response to 

global teleconnections have changed either as a result of natural variation or because of 

climate change. 

 

Precipitation anomalies as a regression function of teleconnections 

 

Considering the relevant number of significant correlations, it might be possible to devise a 

predictive function through multivariate regression to estimate average regional seasonal 

precipitation anomaly. The variables used would only be the teleconnection anomalies which 

correlate with a magnitude over 0.2.   

For instance, in the case of Tirreno 2 RZ, these correlations and the relevant 

teleconnections are shown in Table 7. 

 

The regression function would thus become: 
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where k1, k2, k3 and k4 are the regression coefficient for the variables taken into 

account. 

For the SON months (autumn), ‘season -1’ is JJA (summer), ‘season -2’ is MAM 

(spring) and ‘season -3’ is winter (DJF). Thus, the regression function becomes:  

 
 

5.4 Conclusions 

 

Many studies have been published about the possible influence of teleconnections on 

European and especially Mediterranean precipitation (e.g., Fraedrich, 1994; Kutiel et al., 

1996; Maheras et al., 1999; Mariotti et al., 2002; Dunkeloh and Jacobeit, 2003; Xoplaki et 

al., 2004; Shaman and Tziperman, 2011; Shaman, 2014). In this work, correlation analysis 

at different time frames of influencing teleconnections with different accumulated 

precipitation times show that the Mediterranean Oscillation is the most significant and 

important teleconnection with regard to precipitation in Calabria for the 1981-2010 time 

period. 

 

Results have also shown that from 1951-1980 to 1981-2010 there is a clear change in the 

correlation between the various teleconnection indices and the regional precipitation 

values, for instance in the impact that the Mediterranean Oscillation has on the East coast 

precipitation (Ionio RZs 1-3). Further studies should be required to suggest a possible 

explanation of the phenomenon. 

 

The method has been used for a network of sparse rain gauges, however similar studies 

can easily be performed on regular gridded data networks like ECA&D. Although the 

method has been used for precipitation in Calabria, it can be easily applied to any 

meaningful climatic variable which is relevant at the local level, e.g., temperature, and at 

any region in Europe, provided that the assumption of similar climate patterns (i.e., 

belonging to the same microclimate or local climate region) holds true. 

 

It is also possible to compare results from this method with other tests: for instance, one 

could compare correlation from individual stations and/or grid points with the results from 

regional correlation. On one hand, this can test how well the assumption of similar climate 

holds for a region; on the other, it can find outlier stations or grid points that can point out 

for some special feature of the area taken into account. Another possibility is to perform a 

different regional correlation by averaging precipitation over a climatic area and compare 

the results with those from the regional correlation introduced in this study 



  Work Package 5 / Deliverable 5.3

 38  

 

Figure 5.1. The five Rainfall Zones over a DEM of Calabria. 
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Table 5.1. Seasonally averaged teleconnections with the highest, significant correlation 

with seasonally accumulated precipitation. Calabria rain zones, 1981-2010. 

 

Ionio 1  RAIN SEASON    

TELECON DJF MAM JJA SON  NAO 

MONTHS   MOI 

Season -1 0 -0,27 -0,24 0  ONI/ENSO 

Season -2 0 -0,21 0 0  WeMOI 

Season -3 0 0,31 0 -0,23  EA 

Season -4 0,26 0 0,47 0  EA/WR 

      SCAND 

Ionio 2       

TELECON DJF MAM JJA SON   

MONTHS    

Season -1 0,22 -0,23 0 0   

Season -2 -0,24 -0,21 0 -0,26   

Season -3 -0,29 -0,32 0 -0,36   

Season -4 0,24 0 0,24 -0,22   

       

Ionio 3       

TELECON DJF MAM JJA SON   

MONTHS    

Season -1 0 -0,22 0 0   

Season -2 -0,22 0 0 -0,26   

Season -3 -0,24 -0,23 0 -0,32   

Season -4 0,26 0 0 -0,25   

       

Tirreno 1       

TELECON DJF MAM JJA SON   

MONTHS    

Season -1 0 -0,26 0 0   

Season -2 -0,26 -0,24 0 -0,33   

Season -3 0 -0,24 0 -0,44   

Season -4 0 0 0,4 0   

       

Tirreno 2       

TELECON DJF MAM JJA SON   

MONTHS    

Season -1 0 0 0,21 -0,29   

Season -2 -0,23 0 -0,26 -0,35   

Season -3 0 0,29 -0,24 -0,29   

Season -4 0 0 0 0   
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 Ionio 1   
PRECIPITATION 
MONTHS         

TELECON 
MONTHS JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC  NAO 

Current to month-2 -0,47 0 -0,25 -0,37 -0,24 0 0,23 0,27 -0,3 -0,22 0 0,28  MOI 

Month -3 to -5 -0,24 0 0 0 0,22 -0,22 -0,3 0,3 -0,25 -0,3 0 0  ONI/ENSO 

Month -6 to -8 0 0 0,36 0 -0,26 0,21 -0,22 0,24 -0,24 0 0 0,35  WeMOI 

Month -9 to -11 0 0 -0,38 0 0,22 0,26 0,26 0,37 -0,26 -0,28 0,33 0,27  EA 

              EA/WR 

 Ionio 2           SCAND 

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current to month-2 -0,47 0 -0,32 0 0,32 0,22 0,2 0 -0,22 -0,22 0 0,21   

Month -3 to -5 -0,24 0 0 0,23 0,22 0 0 -0,21 -0,3 0 0 -0,27   

Month -6 to -8 -0,2 0,24 -0,41 0,23 -0,25 0,23 0 0 0,29 0,33 0 -0,3   

Month -9 to -11 0 -0,27 -0,45 0 0,21 0 -0,2 0 -0,29 -0,23 0,25 0,22   

               

 Ionio 3            

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current to month-2 -0,46 0 -0,35 0 0,25 0 0,2 0 -0,25 -0,23 0 0   

Month -3 to -5 -0,28 0 0 0 0,29 -0,23 0 0 -0,26 0 0,25 0   

Month -6 to -8 -0,21 0 -0,22 0 0 0 0 0 0,26 0,32 0 0   

Month -9 to -11 -0,24 -0,24 -0,46 0 0,21 -0,21 -0,23 0,2 -0,25 -0,32 0,22 0,23   

               

 
Tirreno 
1            

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current to month-2 -0,45 -0,25 -0,36 -0,2 0,27 0 0 0,21 0,28 -0,32 0 -0,23   

Month -3 to -5 0 0 0 -0,26 0,24 -0,2 0 0 -0,35 -0,3 0 0   

Month -6 to -8 0 0,22 -0,34 -0,24 -0,22 -0,29 0 0 -0,31 -0,22 0,22 -0,34   

Month -9 to -11 0 -0,33 -0,3 -0,23 0,21 0,23 0,23 0,23 0,3 0 -0,25 0,28   
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Tirreno 
2            

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current to month-2 -0,36 -0,26 0 0 0,27 0 0,23 0 0,26 -0,35 0,22 0   

Month -3 to -5 -0,22 0 0 -0,24 0,25 -0,35 0 -0,2 -0,29 -0,23 0,22 0   

Month -6 to -8 -0,22 0,21 0,28 0 0 0,25 0 0 0,25 -0,21 0,22 0,26   

Month -9 to -11 0 -0,31 -0,39 -0,29 0 -0,27 -0,21 0,33 0 0 0,26 0,25   
 

Table 5.2. Three-months averaged teleconnections with the highest, significant correlation value with monthly precipitation. Calabria rain 

zones, 1981-2010. 
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Ionio 1       
PRECIPITATION 
MONTHS               

TELECONNECTION 
MONTHS JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC  NAO 

Current month -0,49 -0,4 0,43 0,25 -0,31 0 -0,24 -0,43 0 -0,25 -0,25 0  ONI/ENSO 

Month -1 -0,27 0 -0,35 0,25 0,31 0,3 0,34 0 0 0 0 0  WeMOI 

Month -2 0,25 0,42 -0,25 0 0,24 -0,22 0 -0,27 -0,3 0 0 0  EA 

Month -3 0,25 0 0 -0,31 0,23 0,34 -0,28 -0,29 0,27 0 0 0,23  EA/WR 

Month -4 0 0 0,2 0,23 -0,25 -0,31 0,22 -0,23 -0,2 0 0 0  SCAND 

Month -5 -0,31 0 0 0 0 0 0 0,25 -0,32 0 -0,24 0   

Month -6 0 0 0,36 0,26 0,23 0 0,23 0 -0,29 0 -0,32 0   

Month -7 0 -0,23 0 0,21 0,35 -0,22 -0,29 0,27 -0,28 0,24 0 0,22   

Month -8 0,27 -0,23 -0,36 -0,27 -0,24 0 -0,3 0,21 -0,28 -0,35 0,29 0,21   

Month -9 0 0 0,34 0 0 0,22 0,24 0,31 -0,29 -0,27 0,21 -0,27   

Month -10 0 0 0,27 0 0,23 -0,28 -0,22 -0,24 -0,25 0,25 0 0,24   

Month -11 0,25 0,31 0 -0,21 0,28 0,26 0,41 -0,24 -0,24 -0,31 -0,24 0,3   

               

Ionio 2               

  JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current month -0,49 -0,47 0,47 0,24 0,33 -0,22 -0,22 -0,36 0 0 -0,33 -0,26   

Month -1 -0,28 0 -0,35 -0,25 0,35 0,25 0,37 0 0,3 0 -0,23 0   

Month -2 -0,24 0,34 -0,33 0,21 0,3 0,28 0 0 -0,34 0 0 0   

Month -3 0 0 0 -0,21 0,28 0 -0,32 0 0 0 -0,25 0,27   

Month -4 0,21 0 0 0 0,32 -0,21 0,3 -0,26 0,28 0 0 0,24   

Month -5 -0,32 0,21 -0,21 0,24 0,29 0,21 -0,28 -0,24 0 0,25 0,22 0,24   

Month -6 -0,24 0 -0,41 0 0,21 -0,29 0 0,28 -0,23 -0,26 -0,33 0   

Month -7 0 -0,21 -0,36 0,26 0,31 0 0,24 0 -0,2 -0,29 0 0   

Month -8 -0,25 -0,24 -0,43 0,24 -0,25 0 0 0 0 -0,4 0 0,29   

Month -9 0 0,25 0,28 0 0 0,23 0 -0,23 -0,33 -0,3 0 0   

Month -10 -0,33 0 -0,27 0,25 0,21 -0,23 0 0,26 -0,3 -0,32 0 0,27   



  Work Package 5 / Deliverable 5.3 43  

Month -11 0 0 0 0 0,28 0 0,34 0 -0,21 0 -0,2 0,24   

               
 
Ionio 3               

  JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current month -0,46 -0,39 0,47 0 0,29 0 0 0,29 0 0 0,32 -0,23   

Month -1 -0,32 -0,22 -0,31 -0,21 0,32 0,22 0,33 0,29 0 0 0 0   

Month -2 -0,28 -0,22 -0,37 0 0,28 0 0 0,22 0,31 0,3 0,25 -0,26   

Month -3 0 0 0 0 0,24 0 0,22 0,25 0,22 0 -0,26 -0,24   

Month -4 -0,2 0 0 0 0,25 0 0 -0,21 0,22 0 -0,21 0,24   

Month -5 -0,31 0 -0,2 0 0,31 0 0 0,28 -0,3 0,21 -0,27 0   

Month -6 -0,26 0 -0,24 0 0,28 0 0 0,26 0 -0,29 -0,29 0   

Month -7 0 -0,24 -0,27 0 -0,24 -0,23 0 0 0 -0,31 0 0   

Month -8 -0,28 0 -0,43 0 0 -0,27 0 -0,21 0 -0,4 0,21 0   

Month -9 0 -0,23 0 0 0,2 0 0 0 -0,31 -0,28 -0,26 0   

Month -10 -0,35 0 0 -0,23 0,21 -0,23 0 0 -0,27 -0,45 0 0   

Month -11 -0,33 0,25 0 0 0,24 -0,21 -0,28 -0,21 0 -0,2 0 0   

               

Tirreno 1               

  JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current month -0,45 -0,6 -0,37 0,35 -0,44 0 -0,32 -0,32 0,38 0,28 -0,3 -0,35   

Month -1 0,29 -0,26 -0,32 0 0,23 0,24 0,37 0,24 -0,27 0,24 -0,26 0   

Month -2 0,22 -0,21 -0,36 0,27 0,26 0,24 -0,22 -0,3 0,41 0 -0,25 0,24   

Month -3 -0,27 0 0 0 0,3 0,24 -0,35 -0,26 -0,35 0,25 -0,22 0,23   

Month -4 0 0 0 -0,2 0,31 -0,31 0,3 0 -0,25 0,4 0 0   

Month -5 -0,21 -0,26 -0,29 -0,26 0,31 0 -0,25 -0,22 -0,31 0,28 -0,22 0   

Month -6 -0,22 -0,25 -0,34 -0,21 0,28 0 0 0,26 -0,29 -0,3 -0,42 0   

Month -7 0 0,29 -0,24 -0,24 0,35 -0,22 0 0,25 -0,27 -0,35 0 0,26   

Month -8 0,33 -0,24 -0,29 0 0,24 -0,28 0 0 0,31 0,22 -0,25 -0,22   

Month -9 0,23 -0,29 -0,33 0 0,23 -0,36 0 0 -0,28 -0,38 0 -0,3   

Month -10 0 0 0,24 0 0,23 -0,32 0 0 -0,26 -0,31 -0,26 0,3   

Month -11 -0,28 0 0 -0,22 0,24 0,24 0,33 0 0 -0,31 -0,2 -0,23   
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Tirreno 2               

  JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current month -0,37 -0,55 0,41 0,22 0,3 0 -0,21 -0,32 0,28 0 -0,3 -0,31   

Month -1 0,22 -0,27 -0,32 -0,28 0,25 0,24 0,29 0 -0,24 0 0 0   

Month -2 0,23 -0,27 0 0,38 0,25 0,24 0 -0,24 -0,28 0 0 -0,2   

Month -3 0 0 0,27 0 0,27 -0,2 0,22 0,24 -0,36 -0,22 0 0,22   

Month -4 0 0,23 0 -0,32 0,27 -0,29 0,23 -0,22 0 0 0 0   

Month -5 -0,27 0,22 0 -0,26 0,31 0 0 0,21 0,33 0,22 -0,2 0   

Month -6 0 -0,3 0,28 -0,22 0,25 -0,23 0,22 0,27 0 -0,29 -0,29 0   

Month -7 0 -0,27 -0,22 0,21 0,35 -0,35 -0,24 0 0 -0,33 0 -0,21   

Month -8 -0,31 -0,21 -0,38 0,32 0 -0,29 0 0 0 -0,23 0,23 0   

Month -9 0 -0,3 0,25 -0,3 0,2 0,28 0 -0,22 0 -0,33 0,25 -0,22   

Month -10 -0,33 0,22 0 0,27 0 -0,33 0 0,21 0 -0,41 0,25 0,22   

Month -11 0 0,26 0 0 0 -0,31 0,36 0 0 -0,23 0,24 0   
 

Table 5.3. Monthly teleconnections with the highest, significant correlation value with monthly precipitation. Calabria rain zones, 1981-2010.
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IONIO 1 # strongest correlation # magnitude above 0.4 

NAO 12 0 

   

MOI 16 2 

ONI/ENSO 9 0 

WeMOI 10 1 

EA 16 2 

EA/WR 20 0 

SCAND 11 1 

IONIO 2 # strongest correlation # magnitude above 0.4 

NAO 17 0 

MOI 19 3 

ONI/ENSO 4 0 

WeMOI 16 1 

EA 12 0 

EA/WR 16 0 

SCAND 6 2 

IONIO 3 # strongest correlation # magnitude above 0.4 

NAO 13 0 

MOI 17 3 

ONI/ENSO 5 0 

WeMOI 12 1 

EA 10 0 

EA/WR 13 0 

SCAND 8 1 

TIRRENO 1 # strongest correlation # magnitude above 0.4 

NAO 17 0 

MOI 12 1 

ONI/ENSO 17 0 

WeMOI 19 1 

EA 11 3 

EA/WR 17 1 

SCAND 12 0 

TIRRENO 2 # strongest correlation # magnitude above 0.4 

NAO 17 0 

MOI 16 2 

ONI/ENSO 10 0 

WeMOI 15 0 

EA 12 0 

EA/WR 13 0 

SCAND 11 1 

Table 5.4. Number of months (#) when a teleconnection (left) has the strongest 

correlation with monthly precipitation (center) and the number of months when this 

correlation is equal or above 0.4. Calabria rain zones, 1981-2010.
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TELECONNECTION 
MONTHS         

PRECIPITATION 
MONTHS          

Ionio 1 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current month -0,37 -0,27 0,27 0,23 -0,27 0 0 -0,32 -0,23 0,24 -0,3 0  NAO 

Month -1 0 0 0 0,25 0 0,24 0 0 0 -0,2 0 0  MOI 

Month -2 0 0 0 0,2 0,26 0 0 -0,21 0 0 0 0  ONI/ENSO 

Month -3 0 0 0 -0,24 0 0,25 0,2 -0,21 0,23 0 -0,21 0  WeMOI 

Month -4 -0,24 0 0 0 0 0 0 0 0,24 0,2 0,21 0  EA 

Month -5 0 0 0 0 0 0 0 0 0 0,25 0 0  EA/WR 

Month -6 0 0 0 0 0 0 0 0 0 0 -0,22 0  SCAND 

Month -7 0 0 0 0,2 0,2 0 0 0 0 0 0 0,24   

Month -8 0,28 0,22 0 0 0 0 -0,21 0 0 -0,3 0 0   

Month -9 0 0 -0,23 0 0 0 0 0 -0,25 0 0,23 0   

Month -10 0 0 0,2 0 0 0 0 0,28 0 0 0 0   

Month -11 0 0 0 -0,21 0,24 0 0,28 0 0 0 0 0,24   

               

Ionio 2 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current month -0,39 0,31 0,38 -0,29 0,26 0,2 -0,23 -0,29 -0,24 0,3 -0,36 -0,24   

Month -1 0 0 -0,22 0 0,25 0 0 0 0,27 0 0 0   

Month -2 0 0 -0,21 0 0,25 0 0 0,21 0 0 0,27 0   

Month -3 0 0 0 0 0 0 0 0 0 0 -0,21 -0,22   

Month -4 -0,25 0 0 0 -0,21 0 0 0 0 0 -0,21 -0,25   

Month -5 -0,24 0 0 0 0 0 0 -0,2 0 0,23 0,22 0   

Month -6 0 0 0 0 0 0 0 0 0 0 -0,21 0   

Month -7 0 0 -0,26 0,26 0,24 0 0 0 0 0 0 0   

Month -8 0,21 0,25 -0,2 0 0 0 0 0 0 -0,24 0 0,22   

Month -9 0 0,24 -0,2 0 0 0,22 0 0 -0,25 0 0 0   

Month -10 -0,22 0 0 0 0 0 0 0,27 0 -0,2 0 0   

Month -11 0 0 0 0 0,23 0 0 -0,23 0 0,26 0 0   

               



  Work Package 5 / Deliverable 5.3 47  

Ionio 3 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current month -0,33 0,27 0,36 0 0,24 0 0 0,24 0 0,37 -0,35 0   

Month -1 0 0 -0,21 0,22 0,26 0 0 0,22 0 0,24 0 0   

Month -2 0 0 -0,24 0 0,22 0 0 0,23 0 -0,27 0 0   

Month -3 0 0 0 0 0 0 0 0 0 0,21 0 0   

Month -4 0 0 0 0 0 -0,2 0 0 0 0,22 -0,23 0   

Month -5 0 0 0 0 0 0 0 0 0 0,25 0 0   

Month -6 0 0 0 0 0 0 0 0 0 -0,25 0 0   

Month -7 0 0 0 0,21 0 0 0 0 0 -0,21 0 0   

Month -8 0 0 0 0 0 0 0 0 0 -0,26 0 0   

Month -9 0 0 0 0,2 0 0 0 0 -0,23 -0,21 0 0   

Month -10 0 0 0 0 0 0 0 0 0 -0,28 -0,22 0   

Month -11 0 0 0 0 0,22 0 0 0 0 -0,24 0 0,21   

               

Tirreno 1 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current month -0,35 -0,46 -0,37 0,21 -0,36 0 0 -0,28 -0,23 0,31 -0,26 -0,43   

Month -1 0,22 -0,23 0 0 0 0 0 0,25 0,25 0 0,23 0   

Month -2 0 0 0 0 0 -0,21 0 0 0 0 0 0   

Month -3 0 0 0 0 0 0 0 0 -0,22 0,23 0 0   

Month -4 0 0 0 0 0 -0,2 0 0 -0,22 0,26 0 0   

Month -5 0 0 -0,2 0 0 0 0 0,22 0 0 0 0   

Month -6 0 0 0 0 0 0 0 -0,22 0 0 -0,21 0   

Month -7 0 0 0 0 0,21 0 0 0 -0,21 -0,21 0 0   

Month -8 0,24 0 0,26 0 0 -0,2 0 0 0 0 0 0,23   

Month -9 0 0 0 0,2 0 -0,24 0 0 0 -0,26 0 0   

Month -10 0 0 0 0 0 0 0 0,3 0 0 0 0   

Month -11 -0,22 0 0,23 0 0 0 0,23 0,25 0 0,28 0 0   
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Tirreno 2 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC   

Current month -0,27 -0,36 -0,37 -0,2 0,23 0 0 -0,24 0 0,21 -0,33 -0,32   

Month -1 0 0 0 0 0,2 0 0 0,25 0 0 0 0   

Month -2 0 0 0 0 0,21 0 0,21 0,24 0 0 0 0   

Month -3 0 0 0,21 0 0 0 0 0 -0,23 0 0 0   

Month -4 -0,21 0 0 0 0 0 0 0 0 0 0 0   

Month -5 0 0 0 0 0 0 0 0 0 0 0 0   

Month -6 0 0 0 0 0 0 0 0 0 0 -0,23 0   

Month -7 0 -0,22 0 0,22 0,22 -0,21 0 0 -0,2 0 0 0   

Month -8 0 0 0 0 0 0 0 -0,2 0 0 0 0   

Month -9 0 0 0 -0,2 0 0,27 0 0 0 0 0 0   

Month -10 0 0 0 0 0 0 0 0,32 0 -0,22 0 0   

Month -11 0 -0,21 0 0 0 0 0,22 0,22 0 -0,24 0 0   
 

Table 5.5. Monthly teleconnections with the highest, significant correlation value with monthly precipitation. Calabria rain zones, 1951-2010.



 

 

 

 

IONIO 1 1951-1980 1981-2010 

NAO 9 (0) 12 (0) 

MOI 10 (1) 16 (2) 

ONI/ENSO 22 (0) 9 (0) 

WeMOI 17 (0) 10 (1) 

EA 14 (0) 16 (2) 

EA/WR 14 (1) 20 (0) 

SCAND 19 (2) 11 (1) 

IONIO 2   

NAO 9 (0) 17 (0) 

MOI 8 (0) 19 (3) 

ONI/ENSO 6 (0) 4 (0) 

WeMOI 20 (0) 16 (1) 

EA 14 (1) 12 (0) 

EA/WR 19 (2) 16 (0) 

SCAND 19 (1) 6 (2) 

IONIO 3   

NAO 13 (2) 13 (0) 

MOI 8 (0) 17 (3) 

ONI/ENSO 12 (0) 5 (0) 

WeMOI 9 (0) 12 (1) 

EA 11 (0) 10 (0) 

EA/WR 17 (3) 13 (0) 

SCAND 18 (0) 8 (1) 

TIRRENO 1   

NAO 13 (0) 17 (0) 

MOI 15 (1) 12 (1) 

ONI/ENSO 7 (0) 17 (0) 

WeMOI 15 (0) 19 (1) 

EA 16 (0) 11 (3) 

EA/WR 14 (1) 17 (1) 

SCAND 20 (0) 12 (0) 

TIRRENO 2   

NAO 12 (1) 17 (0) 

MOI 9 (2) 16 (2) 

ONI/ENSO 16 (0) 10 (0) 

WeMOI 17 (0) 15 (0) 

EA 16 (1) 12 (0) 

EA/WR 17 (1) 13 (0) 

SCAND 21 (1) 11 (1) 

Table 5.6. Number of months (#) when a teleconnection (left) has the strongest 
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correlation with monthly precipitation (and, in brackets, the number of months when 

this correlation is equal or above 0.4). Calabria rain zones; 1951-1980 (center), 

1981-2010 (right). 

 

 

 

Tirreno 2       

INFLUENCE on DJF 
on 
MAM on JJA on SON   

-1 0 0 0,21 -0,29  NAO 

-2 -0,23 0 -0,26 -0,35  MOI 

  0,2        ONI/ENSO 

-3 0 0,29 -0,24 -0,29  WeMOI 

        -0,28  EA 

-4 0 0 0 0  EA/WR 

      SCAND 
Table 5.7. Seasonal teleconnection indices which correlate significantly with seasonal 

accumulated precipitation, with correlation values of 0.4 or above. Tirreno 2 region, 1981-2010. 
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6. Linking variability and trends in thermal growing season onset to 

the NAO and EA patterns 

Philip Craig, Richard P. Allan  

6.1 Introduction 

Agriculture is strongly affected by weather and climate with up to 80% of variability in crop 

production linked to weather conditions (Hoogenboom, 2000). Climate change is also likely to 

affect European agriculture with the increasing likelihood of droughts in southern Europe during 

summer and longer growing seasons in northern Europe due to warmer winters (Bindi & 

Olesen, 2011). 

INDECIS has various temperature- and precipitation-based variables related to the agriculture 

sector (Dominguez-Castro et al, 2020). For example, growing season onset (ogs6, ogs10), 

growing season length (gsl), growing season rainfall (gsr) and mean growing season 

temperature (t_ao, t_ms) are all included in the dataset. 

Here, we focus on the growing season onset as this is the first gridded dataset of growing 

season onsets for all of Europe. Previous studies have generally focused on station data over 

specific regions within Europe and their relationships with teleconnections, e.g. Finland 

(Irannezhad & Klove, 2015) and Poland (Tomcyzk et al, 2019). Cornes et al. (2018) used the 

ECA&D homogenized observations (Klok and Klein Tank, 2009) which had sparse coverage in 

some regions and has since been improved upon as part of INDECIS (Coll et al., 2019).  

INDECIS provides two definitions of thermal growing season onset (Klein Tank et al., 2009): 

one using the first six day span with each daily mean temperature above 5°C (ogs6) and 

another using the first ten day span with each daily mean temperature above 10°C (ogs10). We 

have used ogs10 because synoptic scale temperature events which influence growing season 

onset typically last around 10 days (Cornes et al., 2018). This avoids any unusually early 

growing season onsets followed by late frosts to which the early growing season will become 

increasingly susceptible to as the onset gets earlier with climate change (Liu et al., 2018; Ceglar 

et al., 2019). 

By using Principal Component Analysis, Cornes et al. (2018) found that 34.7% of interannual 

variability in ogs6 can be explained by the NAO and EA teleconnections, and also that they 

explain 57% of interannual variability when a time series decomposition method is used to 

define growing season onset. Irranezhad & Klove (2015) found that the EAWR pattern is the 

most significantly correlated with variations in the Finnish growing season onset. Tomcyzk found 

some influence from the NAO in North-West Poland and the EA in the south of Poland. 

From INDECIS, ogs10 is earliest in southern and western Europe, increasing towards the north 

and east with mountainous regions also showing late onset (Figure 6.1a). Some of these 

regions are not relevant to agriculture anyway. The most variable regions are Ireland, South 

England, North France through Belgium & Holland into North Germany with very low variability 

in Portugal and South Spain where the growing season is likely to last all year (Figure 6.1b). 
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There is a general increasing trend over Europe which is strongest around the English Channel 

(Figure 6.1c). Most of Eastern Europe, which has late onset and low variability, has weak but 

statistically significant increasing trend. 

 

 

Figure 6.1: (a) the 1950-2016 annual mean ogs10, (b) the trend in ogs10 over 1950-2016 where 

stippling indicates statistical significance at the 95% level using a Wald Test, and (c) the 

standard deviation of ogs10 across 1950-2016. 

 

6.2 Methods 

We have investigated the relationship between growing season onset and four teleconnection 

patterns relevant to European weather and climate (NAO, SCA, EA, EAWR) by removing each 

teleconnection signal from the ogs10 time series at each grid point with the method described 

by Bhend & von Storch (2008) and Iles & Hegerl (2017). The signal is removed by regressing 

the detrended ogs10 time series on the detrended teleconnection index with least squares linear 

regression. The resulting slope at each grid point is the teleconnection signal in ogs10. The 

teleconnection component of ogs10 interannual variability is calculated by multiplying each 

year’s ogs10 by the signal and the residual variability is simply the difference between the 
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ogs10 time series and the teleconnection component of interannual variability. The residual 

variability represents the variability when the circulation changes associated with each 

teleconnection pattern are removed. 

We have focused on the NAO and EA signals for ogs10 (Figure 6.2) since these two 

teleconnections have the strongest relationships with the interannual variability of ogs10 and 

have more statistical significance than EAWR and SCA (not shown). We also focus on the three 

months at the beginning of the year (JFM; January-February-March) as the annual mean ogs10 

for the main agricultural regions of Europe is generally within the first 90 days of the year 

(Figure 6.1(a)) and the teleconnection signals after March are generally weak with little 

statistical significance. 

6.3 Interannual variability 

The JFM NAO and EA both generally have a negative signal in ogs10 across Europe (Figure 

6.2) i.e. the positive NAO and EA phases result in an earlier growing season onset. The EA 

signal is strong across much of continental Europe with statistically significant negative signal 

(earlier onset) over France, Germany, Italy and South-East Europe (Figure 6.2d). The NAO 

signal is strongest around the English Channel with a region of statistical significance in South 

England and North France (Figure 6.2a). On continental Europe, the NAO signal is much 

weaker than the EA signal although there is a region of statistically significant NAO signal over 

Hungary. The area along the southern coast of the English Channel occupied by statistically 

significant NAO signal has a much weaker EA signal which is not statistically significant. 

 

Figure 6.2: relationships between the JFM (January-February-March) NAO and EA teleconnection indices and the 

ogs10. The top row corresponds to the NAO and the bottom row corresponds to the EA: (a) and (d) show the 

teleconnection signals, (b) and (e) show the JFM teleconnection patterns contributions to the overall trend, (c) and 

(f) show the residual trend when the teleconnection contribution is removed. Green contours indicate a reduction 

in ogs10 (earlier onset) and brown contours indicate an increase in ogs10 (later onset). Stippling indicates 

statistical significance at the 95% level using a Wald Test. 
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The positive phases of both NAO and EA in JFM are associated with earlier ogs10 and the 

negative phases are associated with later ogs10 (Figure 6.3). The influence of the NAO on 

ogs10 decreases rapidly with increasing distance from the Atlantic coast (Scheifinger et al., 

2002). The regions most influenced by NAO+ are confined to Western Europe (Ireland, 

England, France, Belgium, Holland) with onset about 20 days earlier for years with NAO+ 

greater than one standard deviation above the mean (Figure 6.3a). A narrow corridor along the 

axis of the English Channel from Cornwall to Denmark is most strongly influenced by NAO- 

(Figure 6.3b). A broader region stretching across continental Europe is strongly affected by EA+ 

with earlier ogs10, but EA- is associated with later ogs10 in France and Spain with a much 

weaker influence into Central Europe (Figure 6.3c,d). 

 

Figure 6.3: composites of anomalies from ogs10 annual mean for (a) all years where JFM NAO index is greater than 

one standard deviation above the 1950-2016 mean JFM NAO index; (b) all years where JFM NAO index is less than 

one standard deviation below the 1950-2016 mean JFM NAO index; (c) same as panel (a) but for the EA index; and 

(d) same as panel (b) for the EA index. Green contours indicate a reduction in ogs10 (earlier onset) and brown 

contours indicate an increase in ogs10 (later onset). 

To investigate the role of the NAO and EA in ogs10 interannual variability, six regions with 

statistically significant signals for one or both teleconnections were selected (Figure 6.4(a)): 

Great Britain and Ireland (GBI), France, Italy, Poland and North Germany (PNG), Hungary and 

the Balkans. Hungary has been kept separate from the Balkans as it has strong and statistically 

significant signals in both teleconnections (Figure 6.2). The JFM NAO and EA signals were 

averaged over these regions and compared to the area-averaged anomalies from the ogs10 

climatology (Figure 6.4b-f). Various years with particularly late or early growing season onsets 

can therefore be linked to either the NAO or EA component of inerannual variability. 
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Figure 6.4: (a) regions over which the JFM NAO and EA ogs10 signals from Figure 6.2 are averaged; (b)-(g) yearly 

ogs10 anomalies (black lines) with the yearly NAO (red lines) and EA (blue lines) components; and (h) the NAO and 

EA indices averaged across JFM. In panels (b)-(g) negative values represent an earler growing season onset and 

positive values represent a later growing season onset. 

Interannual variability in area-averaged GBI ogs10 can be partially linked to the JFM NAO but 

not the EA. The NAO component closely follows the anomalies around 1960 and 2010 with the 

positive (late onset) peaks sometimes entirely explained, or exceeded, by the NAO component 

(Figure 6.4b). In contrast, the EA component is almost completely flat reflecting the weak EA 

signal for this region of varying sign (Figure 6.2d). Furthermore, the NAO component has an 

explained variance of 23% compared to 1% for the EA component (Table 6.1). 

Across France, the NAO and EA components each have a more balanced contribution with 13% 

and 17% explained variance respectively (Table 6.1), although they each influence different 

parts of France (Figure 6.2a,d). The interannual variability in the 1950s looks to be mostly 

explained by the EA component but the largest ogs10 anomalies, particularly for early onset, do 

not appear to be explained by either teleconnection (Figure 6.4c). 

For Italy, the EA component often follows the interannual variability of the ogs10 anomalies 

(Figure 6.4(d)) and it has explained variance of 28% compared to 16% from the NAO 

component which does not appear to match much of the ogs10 variability. This is to be 

expected since the region of strong, statistically significant NAO signal only is small area of 

northwest Italy, whereas the EA signal is strong over a larger area (Figure 6.2a,d). However, the 

EA component does not explain the post-1990 early onset (negative) peaks and neither 

component gives any representation of the consistent late onset for a few years around 1980. 

The interannual variability for the PNG region is more closely linked to the EA component than 

the NAO component. Some of the variability in the EA component corresponds to the variability 

in the ogs10 anomalies but the major peaks in the anomalies are not explained by either 

teleconnection component (Figure 6.4e). Specifically, two early onset peaks above 20 days 
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either side of 1960, three late onset spells around 1980 and two huge early onset peaks above 

50 days after 2000. 

Hungary has the best overall statistical relationships with the two teleconnection indices and a 

total explained variance of 49% (Table 6.1), reflecting the strong signals (Figure 6.2a,d). The 

interannual variability of the EA component corresponds well with the ogs10 anomalies and 

matches some of the lower peaks exactly (Figure 6.4f). The NAO component has a slightly 

lower explained variance but it does correspond with some of the variability in ogs10 anomalies 

where the EA component does not. 

The EA component for the Balkans has the highest explained variance for any region (30%, 

Table 6.1) and the interannual variability of the EA component corresponds well with the ogs10 

anomalies throughout the INDECIS time period. This is particularly notable after 1990 (Figure 

6.4g). The strong statistical relationship between the EA component and the ogs10 anomalies 

for the Balkans reflects the strong JFM signal (Figure 6.2d) across much of the region, 

particularly Northern Croatia/Serbia and the Greek Aegean coast. Romania appears to be an 

outlier in the Balkans as it has a weak signal for both teleconnections and has areas of 

statistical significance on two sides (Figure 6.2a,d). 

 

Table 6.1: correlation coefficients (R) between ogs10 interannual variability and its NAO and EA 

components averaged over each region highlighted in Figure 6.3(a). Numbers in italics indicate 

R which are not statistically significant at the 95% level. 

 Great Britain 

& Ireland 

France Italy Poland & 

North 

Germany 

Hungary Balkans 

 NAO EA NAO EA NAO EA NAO EA NAO EA NAO EA 

R 0.48 -0.12 0.36 0.41 0.4 0.53 0.33 0.47 0.48 0.51 0.21 0.55 

R2 0.23 0.01 0.13 0.17 0.16 0.28 0.11 0.22 0.23 0.26 0.05 0.3 

 

6.4 Trends 

The trend in the JFM NAO and EA components of ogs10 interannual variability are visibly 

similar to their signals and statistically significant across Europe (Figure 6.2b,e) since the JFM 

means for each teleconnection index are increasing (Figure 6.3h). The residual trends for both 

teleconnections are weak in regions where there is strong signal in the interannual variability but 

statistically significant in regions with a weak signal, specifically Ukraine, Belarus, South 

Sweden and South Finland (Figure 6.3c,f). Part of the region around the English Channel with 

strong NAO signal also has the strongest residual trend when the JFM EA is removed (Figure 

6.3f). The contributions from the trends in the NAO and EA components are more balanced for 

PNG  
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The strongest overall area-averaged trends are across the GBI (-2.8 days decade-1) and PNG  

(-3.0 days decade-1) regions (Table 6.2).The GBI trend towards earlier onset is dominated by 

the trend in the NAO component of ogs10 (-2.3 days decade-1) which is consistent with the trend 

in the JFM NAO index since 1950 (Figure 6.4h). Only the Balkans has a residual trend which is 

statistically significant. The changes in ogs10 for the Balkans not associated with the NAO or 

EA cause a later onset – this is particularly notable when the EA is removed (Figure 6.2f). The 

result is that the overall ogs10 trend for the Balkans is a weak trend towards earlier onset (-0.8 

days decade-1) which is not statistically significant. 

Table 6.2: area-averaged trends for all six regions shown in Figure 6.4(a). The actual trend is 

the ogs10 trend from Figure 6.1(a), the NAO and EA columns represent the trends in the 

teleconnection component of ogs10 (Figure 6.2 (b,e), and the residual (Figure 6.2(c,f)) is the 

remaining trend when changes associated with the NAO and EA are removed.  Negative trends 

indicate an earlier growing season onset and positive trends indicate a later growing season 

onset. Units are days decade-1 (numbers in italics are not statistically significant at 95% level). 

 actual NAO EA residual 

Great Britain & 

Ireland 

-2.8 -2.3 0.0 -0.5 

France -2.3 -1.2 -1.5 0.4 

Italy -2.4 -0.6 -1.1 -0.8 

Poland &      North 

Germany 

-3.0 -1.0 -1.7 -0.3 

Hungary -2.2 -1.5 -1.6 0.9 

Balkans -0.8 -0.5 -1.6 1.3 

 

6.4 Summary 

Six regions have been identified where interannual variability of growing season onset is 

sensitive to one or both of the JFM NAO and EA. The strongest NAO signal is found around the 

English Channel and the EA signal is strong across much of continental Europe. The positive 

phases of each teleconnection are associated with earlier growing season onsets with the 

influence of the NAO mostly confined to Western Europe. 

The strongest statistical relationship between the NAO and interannual variability of ogs10 is 

found across GBI where the EA has a weak influence. The EA pattern has much strongest 

statistical relationships with ogs10 variability on the continent, particularly for Italy, Hungary and 

the Balkans. Five of the six regions have trends towards an earlier growing season onset 

greater than 2 days decade-1 with only the Balkans showing a weak and non-statistically 

significant trend. The trend in the JFM NAO component dominates the GBI trend and the EA 

trends are more important for the five continental regions. 
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7. Prediction of sectoral indices from atmospheric indices through 

the implementation of statistical models 

Manuel Del Jesus, Salvador Navas, Diego Urrea 

7.1 INTRODUCTION 

Currently, there are multiple methodologies and tools used to make predictions of data series 

for different time and spatial horizons, which are based on statistical models. These models are 

mainly based stablishing statistical links among variables, which have the essential function of 

predicting and accurately representing the phenomena that could happen in future scenarios. 

Data series predictions have great relevance and applicability, because using them, events 

related to agriculture, climate, tourism and disaster risk, among others, can be predicted. An 

example is the high global demand for future climate data series for the development of studies 

that measure the impact of climate change. 

It is here where, through this study, we want to contribute and give an answer to this high 

demand, carrying out the construction, validation and the execution of four statistical prediction 

models, Random Forest (RF), K-nearest Neighbours Regression (KNN), Linear Regression (LR) 

and Seasonal Autoregressive Integrated Moving Average with Exogenous Regressors 

(SARIMAX), which are considered relevant about the wide range of models that exist. 

For the construction of these models, the goal is to use global atmospheric indices as 

predictors, such as ENSO (El Niño-Southern Oscillation) and NAO (North Atlantic Oscillation), 

and as predictand sectoral indices related to agriculture, climate or tourism, among others. 

Another characteristic of this type of model is that they are based on the historical data from 

both the sectoral data series and the atmospheric data series for a given climatic period. 

This study has been developed covering three fundamental approaches: the processing of 

information, the implementation and validation of the statistical model and the analysis of the 

results. This report contains, in addition to this introductory chapter, a chapter in which the 

general and particular objectives of the study are presented (chapter 2), a chapter where the 

description of the study area is presented (chapter 3), a chapter where reference is made to the 

description of the initial data and the sources of information used (chapter 4), a chapter that 

describes the implemented methodology to carry out the analysis and obtain the results of the 

study (chapter 5) and a chapter where the results obtained when applying the models are 

presented and analyzed (chapter 6). Finally, Chapters 7 and 8 present the general conclusions 

of the study and the bibliographic references used for its development. 
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7.2  OBJECTIVES AND CONTENTS OF THE STUDY 

For the preparation of this study, a general objective has been determined, which in turn is 

complemented by specific objectives to specifically encompass and define the scope of the 

study. The objectives described are set out below. 

General objective 

Construction of statistical predictive models using series of the main global atmospheric indices 

as predictors, to predict other types of indices called sectoral, that is, starting from indices such 

as ENSO and NAO, the goal is to evaluate their ability to predict related sectoral indices with 

agricultural, climatic or tourist aspects, among others, from the construction of regression 

models and time series. Likewise, once the models are built, the goal is to evaluate the validity 

of the results obtained through the use of different statistical correlation and error metrics. 

Particular objectives 

• Collection and analysis of information related to atmospheric and sectoral indices 

available in the study area. 

• Implementation and construction of the statistical prediction models Random Forest 

(RF), K-nearest Neighbours Regression (KNN), Linear Regression (LR) and Seasonal 

Autoregressive Integrated Moving Average with Exogenous Regressors (SARIMAX), for 

time lags between 1 and 3 months. 

• Evaluation of the predictive capacity of the models by means of the validation and 

evaluation of the determination coefficient (R²), the Pearson correlation coefficient (R) 

and the mean squared error (MSE), for the different modelled scenarios. 

• Based on the predictive evaluation of the models using the above coefficients, the goal 

is to evaluate which of them provides better results. 

 

7.3  SOURCES OF INFORMATION AND INITIAL DATA 

The sources of information refer to the entities responsible for providing the data for 

atmospheric indices and sectoral indices. In the following lines, the information used in the study 

is presented.  

Information sources related to atmospheric indices 

To carry out the development of the study, two entities dedicated to the collection, treatment 

and generation of atmospheric indices have been consulted. The National Weather Service 

Climate Prediction Center (NWS) was consulted in the first instance and The National Center for 

Atmospheric Research (NCAR), both entities of the United States, in the second instance.  
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The NWS compiles data related to historical and current atmospheric and ocean conditions. 

Additionally, it records information on the behaviour and weather patterns such as the decadal 

oscillations of the North Atlantic and the Pacific, also containing data on ozone concentrations 

and temperature, at different heights of the atmosphere (Climate Prediction Center, 2020). 

Within the teleconnection patterns of the northern hemisphere are those described in Table 7.3, 

which record data related to different global climate behaviours. The information used was 

downloaded from the NWS website and corresponds to the monthly record of teleconnection 

patterns collected from January 1950 to December 2017. 

 

NORTHERN HEMISPHERE TELECONNECTION 

PATTERNS 

Acronym Teleconnection Index Name 

NAO North Atlantic Oscillation 

EA East Atlantic Pattern 

WP West Pacific Pattern 

EP/NP East Pacific/North Pacific Pattern 

PNA Pacific/North American Pattern 

EA/WR East Atlantic/West Russia Pattern 

SCA Scandinavia Pattern 

TNH 
Tropical/Northern Hemisphere 

Pattern 

POL Polar/Eurasia Pattern 

PT Pacific Transition Pattern 

 

Table 7.3 Atmospheric indices consulted at The National Weather Service Climate Prediction 

Center (NWS) 

  

On the other hand, the NCAR databases of atmospheric indices have been consulted, which 

are used to monitor climatic anomalies that occur in the tropical areas of the Pacific and are 

calculated with a base period of 30 years (NCAR, 2020). Within these indices, the Oceanic Niño 

Index (ONI) and the Niño Index 3.4 can be found, which are used to define the occurrence of 

natural events such as The Niño and Niña. For the reasons stated, and like the previous 
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indices, they have been selected as the fundamental basis of this study. The registration period 

used in the study corresponds to the monthly data recorded, which dates from January 1950 to 

December 2017. The data was downloaded from the website1 and is presented in Table 7.4. 

NINO STT INDICES  

NIÑO 3.4 El Niño 3.4 

ONI Oceanic Niño Index 

Table 7.4. Atmospheric indices consulted at The National Center for Atmospheric Research 

(NCAR).  

Also, these indices can be obtained through the tool climate4R.indices 2 developed by the 

meteorology group at the University of Cantabria (Iturbide et al., 2019).  

Information sources related to sector indices 

The sectoral indices have been developed under the INDECIS project (JPI Climate, 2017) and 

include 129 climate indicators geared towards various sectors such as agriculture, disaster risk 

reduction, energy, health, water and tourism (Clime Indices of INDECIS and their links to 

sectorial data, 2020). The description of each of the indices, as well as the database, is 

available on the website3and they have a wide temporal and spatial resolution, covering the vast 

majority of the European continent. 

Within the indices, multiple subgroups stand out, mainly related to precipitation, temperature, 

wind, solar radiation, snow, continental aridity, drought, fires and tourism. In total, all indicators 

that are presented by subgroups in Table 7.5 have been used. Likewise, the information 

consulted has a monthly registration period and has been compiled from January 1950, until 

December of the year 2017. 

 

 

 

 

 

 

 

 
1 https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni 
2 https://github.com/SantanderMetGroup/climate4R.indices 
3 http://www.indecis.eu/ 

https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://github.com/SantanderMetGroup/climate4R.indices
http://www.indecis.eu/
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SECTORAL INDEX GROUPS SECTORIAL INDEX 

Precipitation 

cdd, cwd, d50mm, d95p, dd, dr1mm, dr3mm, ep, gsr, mfi, 

ngsr, pci, r10mm, r20mm, r95tot, r99tot, rti, rx1day, rx5d, 

sdii. 

Temperature 

cfd, csd, csdi, d32, dd17, dtr, etr, fd, gd4, gsl, gtg, gtn, gtx, 

hd17, id, ntg, txn, ogs10, ogs6, ptg, stn10, stn15, stx32, su, 

ta_o, tm_s, tn10p, tn90p, tr, tx10p, tx90p, vcd, vdtr, vwd, 

wki, ws, wsdi, xtg, txx, zcd. 

Wind dfx21, fg, fg6bft, fgcalm, fxx. 

cloud_radiation aci, cc, fod, snd, ssd, ssp. 

Snow 
asd, fpsc, fsc, fsd, hsd, lpsc, ms, msd, scd, sd0_10, 

sd10_20, ss. 

Bioclimatic 
at, bio10, bio11, bio13, bio14, bio15, bio16, bio17, bio18, 

bio19, bio20, bio4, bio5, bio6, bio7, bio8, bio9, hi, mi, wci. 

Aridity continentality bi, cmd, eai, eto, jci, koi, mai, moi, pici, uai 

Drought spei1, spei12, spei3, spei6, spi1, spi12, spi3, spi6 

Fire fwi, kbdi, ffdi, mni, fffi 

Tourism utci 

Table 7.5. Groups and subgroups derived from sector indices (Clime Indices of INDECIS and 

their links to sectorial data, 2020) 

Within the scope of the project, each of the indices was calculated in each of the cells of the 

mesh, with a resolution of 0.25º, which covers the entire European continent. These databases 

have a temporal resolution of 1 month and in some indices of 1 year. Figure 7.1 shows an 

example of the database used. 
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Figure 7.1. Example of data mesh for a sector index and a given month 

 

7.4  DESCRIPTION OF THE STUDY AREA 

The European continent has been selected as the study area for two fundamental reasons: 

firstly, due to the climatic diversity that can be found in the different regions that comprise it, 

which cover a wide range of climatic types; and secondly, due to the wide spatial and temporal 

resolution available for each of the atmospheric and sector indices, covering a registration 

period of approximately 67 years between 1950 and 2017. Figure 7.1 shows the spatial 

coverage of the study domain. 

In order to have a greater coverage of the analysis and taking into account the available 

computational capacity and the modelling time required by each statistical model, a total of 378 

homogeneously spatially distributed cities in Europe have been selected to carry out the 

Random Forest analysis. (RF), K-nearest Neighbours Regression (KNN) and Linear Regression 

(LR), to have representative results in modelling. The selected European cities are represented 

in red points in Figure 7.2. At these points, the corresponding sector index series will be 

extracted with the nearest cell of the data mesh elaborated on the project. 
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Figure 7.2 Cities of Europe selected to carry out the execution of the Random Forest, KNearest 

Neighbours Regression and Linear regression model.  

Similarly, and taking into account the computational capacity demanded by the SARIMAX 

model, which is quite high compared to the other three models, a total of three cities in Europe 

have been selected, distributed in three strategic areas, to cover a more representative area of 

the continent. The selected European cities -Madrid (Spain), Vienna (Austria) and Vadso 

(Finland)- are represented by the red dots in Figure 7.3. 

  

Figure 7.3. Cities of Europe selected to carry out the execution of the SARIMAX regression 

model.  
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7.5  METHODOLOGY  

This section describes the methodological process used to evaluate the predictive capacity of 

atmospheric indices on sectoral indices, based on the application of regression models and time 

series: Random Forest (RF), K-nearest Neighbours Regression (KNN), Linear Regression (LR) 

and Seasonal Autoregressive Integrated Moving Average with Exogenous Regressors 

(SARIMAX).  

Additionally, a theoretical description of the different implemented models is made, as well as an 

explanation of the valuation and qualification methods of these, among which are the Pearson's 

correlation coefficient, the determination coefficient R² and the mean square error. 

Description of the methodological process 

The description of the methodological process refers to the presentation of a diagram that 

synthetically explains the process used to obtain the results, which is presented in Figure 7.4. 

The process of generating prediction models begins with the selection of the predictor variables 

and those that are to be predicted. In this case, as previously stated, the predictor variables will 

be the atmospheric indices and the variables to predict the sectoral indices elaborated on the 

INDECIS project (Clime Indices of INDECIS and their links to sectorial data, 2020). For each of 

the selected points (Figure 7.2-7.3) the time series of the closest cell is extracted from the 

corresponding index database. The atmospheric indices the index does not vary spatially, 

therefore, it will be the same time series for each of the points. At each of the points, the 

prediction model is constructed. 
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Figure 7.4. Methodological description of the study. 

 

To build the model, not all the data available from the series is used, but a certain amount of 

data (80%) is used for training the model, and the rest of the data (20%) are used for validation. 

From the results obtained in the validation, the different coefficients that provide the predictive 

capacity of the model in each one of the points will be calculated and the final result will be the 

average of the values obtained in the set of points. Once the metrics are evaluated, the different 

models used in the study must be compared to see which one has the best predictive capacity. 

Construction of statistical 

models 

• Random Forest 

• Knearest Neighbours Regression 

• Linear Regression 

• SARIMAX 

 

Analysis, selection and 

organization of historical 

information  

Application and selection of 

the most representative 

evaluation method 

• Coefficient correlation Pearson 

• Coefficient of determination  

• Mean squared error 

• Atmospheric indices 

• Sector indices 

 

Evaluation of the predictive 
capacity of the models for 

different delay times 

Comparison of the 

statistical models used 

Description of the 
atmospheric indices that 

best produce based on the 
statistical model used 
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Predictive statistical models 

Random Forest Model 

The Random forest model is a method derived from the bagging process4, which starts from a 

long variety of interrelated trees and then averages them. This method gives very good results 

because it is a combination of predictor trees in such a way that each tree depends on the 

values of a random vector tested independently and with the same distribution for each of these 

(Breiman, 2001). 

The algorithm with which this method is built follows the same methodology as bagging, 

however, the difference is that the Random Forest makes a random selection of m predictors 

before evaluating each division. What this generates is that the model is simpler to train and 

adjust. As a consequence of this, this methodology is widely used (Amit & Geman, 1997). 

Trees are an ideal solution for bagging, because it has the uniqueness of registering complex 

data interaction structures. Bagging also averages many noisy, but roughly unbiased, models 

and is looking to reduce variation. Since trees carry a lot of noise, they benefit from averaging. 

Each of the trees is built according to the following algorithm. 

• N is defined as the number of test cases, while M is defined as the number of variables 

in the classifier. 

• m is defined as the number of input variables to be used to find the decision at a given 

node; it should be noted that m must be much less than M. 

• You must choose a training set for this tree and use the rest of the test cases, this way 

you can estimate the error. 

• For each node in the tree, you must randomly choose m variables on which to base the 

decision. Finally, the best partition of the training set must be calculated from the m 

variables. 

For prediction a new case is pushed down the tree. Then it is assigned the label of the terminal 

node where it ends. This process is iterated by all the trees in the assembly, and the label that 

gets the most incidents is reported as the prediction. 

Among the advantages of the Random Forest, it stands out that it is very useful for modelling 

very large databases, it provides an estimate of which of the variables are most important in the 

classification process, and it also offers an experimental methodology to detect the interaction 

that the variables under study can probably have.  

Other advantages it brings is that it computes the prototypes that give information about the 

relationship between the variables and the classification, as well as the proximity between the 

 
4 The bagging technique was created by Leo Breiman and consists of creating different models using random 

samples with replacement and then assembling or combining the results. The main objective of bagging algorithms 

corresponds to the reduction of variance (Breiman, 1996). 
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pairs of cases that can be used in the groups, identifying outliers or giving interesting 

perspectives on the variables. 

K-nearest Neighbours Model 

The k-nearest Neighbours model is a non-parametric classification method that corresponds to 

a supervised classification, based on a learning process which is based on a set of training and 

prototypes. The concept of the algorithm is simple, because it classifies each data according to 

the distance of a new element with the existing ones, ordering these distances from smallest to 

largest in order to select the group to which it belongs, this group will be, for Therefore, the most 

frequent with the shortest distances (Silverman & Jones, 1989). 

The method has several applications, such as pattern recognition, classification and regression, 

the last one being the one we will use in this study. This model is classified as a type of lazy 

learning, where the function is approached only locally and all the computation is deferred to the 

classification. 

The training spaces correspond to the vectors found in a multidimensional space, which is 

described in terms of p attributes considering q classes for classification. The attribute values of 

the i-th example are represented by the p-dimensional vector. 

 

Space should be determined by in localized areas containing the training examples. A point in 

the same space can then be classified into the class that contains the highest frequency of data 

and is closest to the designated point. Generally, to perform the statistical procedure, the 

Euclidean distance is used, then its equation is presented. 

 

To train the algorithm, you must store the vectors and class labels from the training examples. 

During the classification period, the evaluation of the point starts from the representation of a 

vector in a given space. Subsequently, the Euclidean distance between the stored vectors and 

the new vector must be calculated, and the closest vectors are selected. The new point is 

classified with the class that has the highest frequency in the selected vectors. 

This method assumes that the closest neighbours give the best classification, however, the 

disadvantage of this is that there are many irrelevant attributes that give an incorrect 

classification. Despite the aforementioned, it is possible to correct the bias, by assigning a 

weight to the distances of each attribute, thus increasing the relevance of the most significant 

attributes. There are also other possibilities, such as adjusting weights with known training 

vectors. The most convenient way, before assigning the degree of importance, is to identify and 

eliminate the attributes that are considered irrelevant. 



 

 69 Work Package 5 / Deliverable 5.3   

2 

Linear Regression Model  

A linear regression or fit model is intended to model a dependent random variable named as , 

from a set of independent predictor variables named as , , , …,  all of a random nature. 

The basic structure of this model can be expressed by the following equation: 

 

Where: 

: explained or dependent variable. 

: explanatory or independent variables. 

: regression coefficients that measure the influence that explanatory variables have on 

those explained. 

: number of independent parameters to consider in the regression. 

: random variable that describes the disturbance or residual of the model. This variable 

collects the factors of reality that are not observable and therefore are associated with chance. 

 

The application of linear regression models refers to the study of the relationships that exist 

between the explanatory variables with the explained variables. This relationship defines the 

general structure of the data and through it, future observations can be predicted and the 

relevance of the effect of the predictor variables on the response variable can be assessed 

(Rencher, 2005). In order to create a linear regression model, the following assumptions must 

be met: 

 

• That the relationship between the variables is linear. 

• That the errors ε1, ε2, ε3, …, εn are random and independent of each other, that is, that 

any error εi does not influence the value of the following error ε(i+1). 

• That the errors ε1, ε2, ε3, …, εn have the same variance (Homoscedasticity). 

• That the errors ε1, ε2, ε3, …, εn are normally distributed. 

• That the errors ε1, ε2, ε3, …, εn have a mean of 0. 

• That the correlation between the errors ε1, ε2, ε3, …, εn and the adjusted values is 0. 
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One way to check that the above conditions are met is to plot the residuals εi against the fitted 

values. When the linear model is valid, and the described conditions are fulfilled, the graph will 

not indicate an important pattern, the vertical dispersion of the points will not have significant 

variation with respect to the horizontal dispersion, except for the edges. When these conditions 

are satisfied there is no reason to doubt the assumptions of the linear model.  

In the case of the specific study, the linear regression statistical model will be constructed based 

on a series of predictors that correspond to atmospheric indices (variables X), to predict other 

types of indices called sectoral (variables Y). The results of the model will be analyzed in a later 

chapter. 

Seasonal Autoregressive Integrated Moving Average with Exogenous Regressors 

Model (SARIMAX) 

The Seasonal Autoregressive Integrated Moving Average with Exogenous Regressors 

(SARIMAX) model is derived from the integrated moving average autoregressive model 

commonly known as ARIMA. This model is based on the search for regressions and variations 

of the variables under study, in order to find future prediction patterns. This type of model 

explains future estimates through the observed data. 

The ARIMA model is generally expressed as ARIMA (p, d, q) where p, d, and q are 

characterized by being positive integer terms and are an indicator of the order of the different 

components of the model and represent the autoregressive component, the integrated 

component, and the moving average. The ARIMA model is described as follows: 

 

Where: 

 predicted value. 

d: corresponds to the d differences that are necessary to convert the original series to 

stationary. 

 parameters belonging to the "autoregressive" part of the model. 

 parameters belonging to the "moving averages" part of the model. 

 associated error. 

 

It should be noted that: 
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In case of working with stationary series and with an external predictor, also called an 

exogenous variable, the ARIMA model can be transformed into the already described SARIMAX 

model. It is important that the exogenous variable has a registration period equal to that of the 

endogenous variable. 

 

Evaluation of the predictive capacity of the models 

 

To evaluate the predictive capacity of the models, it is necessary to use an objective scoring 

methodology, which starts from the comparison between the observed results and the data 

obtained from the different prediction models in the validation period. The metrics used as the 

endpoint correspond to the Pearson correlation coefficient, the determination coefficient R² and 

the mean squared error. 

Pearson correlation coefficient 

Pearson correlation coefficient measures the linear dependence between two random variables 

which must be quantified and have to be normally distributed. An important characteristic of this 

method is the independence it has with respect to the units of measurement of the analyzed 

variables since they can have different units. Similarly, the Pearson correlation coefficient 

defines the degree of relationship of two variables as long as they are both continuous. 

When obtaining the Pearson's correlation coefficient, it is important to calculate the P-value, 

which measures the correlation significance. If the p-value is significant, it can be accepted that 

there is a correlation and that its magnitude corresponds to the magnitude indicated by the 

coefficient. In the event that the correlation is not significant, it can be interpreted as 0, that is, 

there is no linear correlation between both variables. The calculation of this coefficient starts 

from the following equation: 

 

Where: 

 covariance of the study variables. 

     standard deviation of the variable Y. 

      standard deviation of the variable X. 

The range of the correlation index varies in the range [-1,1], where the sign indicates the 

meaning of the relationship. To understand better, the result is described below: 
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➢ If r = 1, there is a perfect positive correlation. This means that there is a total 

dependency between the two variables which is called a direct relationship. Because the 

sign is positive, it means that when one of the variables under study increases, the other 

does too. 

➢ If 0 < r < 1, there is a positive correlation. 

➢ If r = 0, there is no correlation between the variables under study. However, this does not 

necessarily imply that the variables are independent, because non-linear relationships 

may exist between the two variables. 

➢ If -1 < r < 0, there is a negative correlation. 

➢ If r = -1, there is a perfect negative correlation. The index indicates a total dependency 

between the two variables which is called the inverse relationship: when one of them 

increases. Because the sign is negative, it means that when one of the variables under 

study increases, the other decreases in a constant proportion. 

Determination coefficient R² 

This coefficient determines the quality of the model to replicate the results and the proportion of 

the variation of the results that can be explained by the model. In the coefficient of determination 

R², it expresses the relationship between the error obtained when comparing the values 

measured in the field (y), against the simulated values (x) and the difference between the values 

taken in the field are their average (yo- y). Utilizing its formulation, an attempt is made to verify 

that the modelled data to explain better the data taken in the field than the simple average of 

these. Next, the corresponding formulation for obtaining it is presented. 

 

Where: 

 covariance of the study variables. 

      variance of the variable Y. 

      variance of the variable X. 

When the difference between the data measured in the field and the average is very significant 

and the error between the data measured in the field and the simulated ones is small, the 

quotient will tend to zero, that is, the coefficient of determination will tend to be one. 

• The mean squared error (MSE) 

The mean square error (MSE) is defined as an estimator in charge of measuring the average of 

the squared errors, that is, using this statistical parameter, the predicted values can be 
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compared with the observed or known values. Its calculation is derived from the following 

formula: 

 

Where: 

 observed variable. 

 predicted variable. 

 data number. 

The smaller the mean square error, the less difference there will be between the predicted 

values with respect to the observed values, that is, when a smaller mean square error is 

obtained, the better the data reproduced by the regression method will be. In the case where 

the MSE is equal to zero, it means that the actual or observed value is the same as the 

calculated value. 

 

7.6 ANALYSIS OF RESULTS 

This chapter describes and analyzes the results obtained by applying the methodologies, 

regression models and time series: Random Forest (RF), K-nearest Neighbours Regression 

(KNN), Linear Regression (LR) and Seasonal Autoregressive Integrated Moving Average with 

Exogenous Regressors. In addition, some recommendations are made regarding the different 

groups of sector indices on which it could be implemented in an operational forecasting system. 

Results of the Random Forest model 

The Random Forest statistical model was built using atmospheric indices as predictors and 

sector indices as predictands. The model was reproduced for three different time lags of the 

series of predictands over the series of predictors, corresponding to 1, 2 and 3 months. The 

cities of Europe selected to carry out the regression correspond to 378, which are represented 

in Figure .  

According to the description in sub-section 7.5 and to evaluate the predictive capacity of the 

Random Forest model, the determination coefficients (R²), the Pearson correlation coefficients 

(R) and the mean square error were calculated (R). Taking into account the values obtained and 

to explain the results more precisely, the determination coefficient (R²) was taken as 

representative.  

Subsequently, the R² values were represented by graphs with colour scales, to observe which 

of the sectoral indices responded better to the predictive capabilities of the model, having 

atmospheric indices as predictors. The results obtained are presented in Figure 7.5 for the 
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model built with one month as the selected time offset, in  Figure 7.6 with two months and in 

Figure 7.7 with three months, respectively.  

 

Figure 7.5. Analysis of the coefficient for the Random Forest regression method taking into 

account the previous 1 months. 

 

 

Figure 7.6 Analysis of the coefficient for the Random Forest regression method taking into 

account the previous 2 months. 

 

Figure 7.7. Analysis of the coefficient for the Random Forest regression method taking into 

account the previous 3 months. 
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Prior to the analysis, it is important to mention that a warmer colour, with tendencies to red 

colour, indicates a coefficient of determination closer to 1, while a colder colour, with tendencies 

to blue, indicates a coefficient of determination closer to 0.  

In Figure 7.5-7.7, it can be seen that the models that showed warmer colours with tendencies to 

red colour correspond to those that were calculated with 2 and 3 months of time lag. This 

phenomenon is accentuated a little more in the indexes of the groups corresponding to 

temperature, tourism, bioclimatic and snow that were presented in Table 7.3. This indicates that 

the simulations with greater time lag obtained determination coefficients with values closer to 1, 

which can be translated as a better predictive capacity of the model. 

Analyzing the predictive behaviour of atmospheric indices, homogeneity is observed in the 

results, which indicates that there is no significant variation in their predictive capacity over a 

given sector index. An example of this can be seen in Figure 7.6 where the predictive capacity 

of the atmospheric indices in relation to the utci tourism index, corresponding to the last box of 

the graph, does not present colour variations, indicating that the determination coefficient has a 

very small variation for all predictions calculated from the evaluated atmospheric phenomena. 

Due to the homogeneity of the results obtained in each of the sectorial indices with respect to 

the atmospheric ones, and bearing in mind that the best coefficients of determination were 

obtained from the model constructed with a lag time of 2 and 3 months, improving a little more 

the R² value for the 2-month model, a box diagram was prepared from it, the results are 

presented in Figure . 

  

Figure 7.8. Boxplot for Analysis of the coefficient for the Random Forest method. 

In Figure 7.8 different coloured points can be visualized, which represent the results of the 

coefficient of determination for each of the groups. The determination coefficients calculated for 

the sectoral indices of the Precipitation group are also contained, which vary between 0.0 and 

0.19, presenting a homogeneous distribution around the median that corresponds to 0.1. Some 
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extreme values of the order of 0.38 can be observed. Likewise, you can see groups that have a 

behaviour similar to that of Precipitation, such as Wind, Drought and Fire, where more than 95% 

of their R² values are below 0.3. 

In the case of the indices corresponding to the temperature group, the results of R² can be seen 

with a very wide range of variation that ranges between 0.1 and 0.81, presenting a 

homogeneous distribution around the median that corresponds to 0.50. Other groups with a 

similar behaviour correspond to Cloud Radiation, Snow and Aridity Continentality which have 

very wide ranges of variation and a median below 0.4. Some extreme values of the Snow group 

stand out, which reach values equal to 1.  

Finally, there are the Bioclimatic and Tourism groups, which have a median above 0.7, 

indicating that at least 50% of the data had coefficients of determination above this value. In the 

case of tourism, there is no dispersion of the data, since there is only one index for each 

atmospheric group. Some extreme values of the Bioclimatic group stand out, which reach 

minimum values equal to 0.17. 

Suggestions for implementation of an operational forecasting system for the Random 

Forest model 

Taking into account the methodological description described in Section 7.5 and based on the 

results obtained for the Random Forest model, a value of the determination coefficient has been 

defined above which the implementation of an operational prediction system can be 

recommended, which corresponds to the values of R² that are above 0.8. Taking this criterion 

into account, Table 7.6 was prepared, which presents the sector indices by group that meet the 

described condition and therefore have a good assessment to recommend the implementation 

of said system. 

 

 

SECTORAL INDEX 

GROUPS 

ATMOSPHERIC 

INDEX 

SECTORAL 

INDEX 
R² 

Snow ea hsd 1.00 

Snow wp hsd 1.00 

Snow epnp hsd 1.00 

Snow pna hsd 1.00 

Snow eawr hsd 1.00 

Snow scan hsd 1.00 
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Snow poleur hsd 1.00 

Snow nino34 hsd 1.00 

Snow oni hsd 1.00 

Bioclimatic epnp bio20 0.86 

Bioclimatic ea bio20 0.86 

Bioclimatic poleur bio20 0.86 

Bioclimatic eawr bio20 0.86 

Bioclimatic scan bio20 0.86 

Bioclimatic pna bio20 0.86 

Bioclimatic wp bio20 0.86 

Bioclimatic nino34 bio20 0.86 

Bioclimatic oni bio20 0.85 

Aridity continentality eawr eto 0.82 

Aridity continentality scan eto 0.82 

Aridity continentality wp eto 0.81 

Aridity continentality ea eto 0.81 

Aridity continentality poleur eto 0.81 

Aridity continentality nino34 eto 0.81 

Aridity continentality epnp eto 0.81 

Aridity continentality pna eto 0.81 

Aridity continentality oni eto 0.81 

Temperature wp gd4 0.80 

Temperature eawr gd4 0.80 

Temperature ea gd4 0.80 

Table 7.6. Recommended sector indices for the implementation of a system for the Random 

Forest regression method taking into account the previous 2 months. 
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Results of the K-nearest Neighbours regression model 

The K-nearest Neighbours regression statistical model, was built using atmospheric indices as 

predictors and sector indices as predictands. The model was reproduced for three different time 

lags of the series of predictands over the series of predictors, corresponding to 1, 2 and 3 

months. The cities of Europe selected to carry out the regression correspond to 378, which are 

represented in Figure .  

According to the description in Section 7.5 and to evaluate the predictive capacity of the K-

nearest Neighbours regression model, the determination coefficients (R²), the Pearson 

correlation coefficients (R) and the mean square error were calculated (R). Taking into account 

the values obtained and to explain the results more precisely, the determination coefficient (R²) 

was taken as representative. Subsequently, the R² values were represented by graphs with 

colour scales, to observe which of the sectoral indices responded better to the predictive 

capabilities of the model, having atmospheric indices as predictors. The results obtained are 

presented in Figure 7.9 for the model built with one month as the selected time offset, in Figure  

7.10 with two months and in Figure 7.11 con with three months, respectively. 

 

Figure 7.9. Analysis of the coefficient for the Knearest Neighbours regression method taking into 

account the previous 1 months. 

 

Figure 7.10. Analysis of the coefficient for the Knearest Neighbours regression method taking 

into account the previous 2 months. 
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Figure 7.11. Analysis of the coefficient for the Knearest Neighbours regression method taking 

into account the previous 3 months. 

Prior to the analysis, it is important to mention that a warmer colour, with tendencies to red 

colour, indicates a coefficient of determination closer to 1, while a colder colour, with tendencies 

to blue, indicates a coefficient of determination closer to 0. In Figure 7.12, it can be seen that 

the models that showed warmer colours with tendencies to red colour correspond to those that 

were calculated with 2 and 3 months of time lag. This phenomenon is accentuated a little more 

in the indexes of the groups corresponding to temperature, tourism, bioclimatic and snow that 

were presented in Table 7.5. This indicates that the simulations with greater time lag obtained 

determination coefficients with values closer to 1, which can be translated as a better predictive 

capacity of the model.  

Analyzing the predictive behaviour of atmospheric indices, homogeneity is observed in the 

results, which indicates that there is no significant variation in their predictive capacity over a 

given sector index. An example of this can be seen in Figure 7.12 where the predictive capacity 

of the atmospheric indices in relation to the utci tourism index, corresponding to the last box of 

the graph, does not present colour variations, indicating that the determination coefficient has a 

very small variation for all predictions calculated from the evaluated atmospheric phenomena. 

Due to the homogeneity of the results obtained in each of the sectorial indices with respect to 

the atmospheric ones, and bearing in mind that the best coefficients of determination were 

obtained from the model constructed with a lag time of 2 and 3 months, improving a little more 

the R² value for the 2-month model, a box diagram was prepared from it, the results are 

presented in Figure 7.12. 
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Figure 7.12. Boxplot for Analysis of the coefficient for the K-nearest Neighbours regression 

method. 

In Figure 7.12 different coloured points can be visualized, which represent the results of the 

coefficient of determination for each of the groups. The determination coefficients calculated for 

the sectoral indices of the Precipitation group are also contained, which vary between 0.0 and 

0.22, presenting a homogeneous distribution around the median that corresponds to 0.1. You 

can also see groups that have a behaviour similar to that of precipitation, such as Wind, Drought 

and Fire, where more than 95% of their R² values are below 0.2, except for the fire group, which 

reaches values extremes of up to 0.4 and 1.0, for the values predicted from the atmospheric 

index oni and ea. 

In the case of the indices corresponding to the temperature group, the results of R² can be seen 

with a very wide range of variation that ranges between 0.0 and 0.78, presenting a 

homogeneous distribution around the median that corresponds to 0.39. Other groups with a 

similar behaviour correspond to Cloud Radiation, Snow and Aridity Continentality which have 

very wide ranges of variation and a median below 0.4. However, some extreme values of the 

Snow and Aridity Continentality group stand out, which reach values equal to 1. Finally, there 

are the Bioclimatic and Tourism groups, which have a median above 0.6, indicating that at least 

50% of the data had coefficients of determination above this value. In the case of tourism, there 

is no dispersion of the data, since there is only one index for each atmospheric group. Some 

extreme values of the Bioclimatic group stand out, which reach minimum values equal to 0. 

Suggestions for implementation of an operational forecasting system for the K-

nearest Neighbours regression model 

Taking into account the methodological description described in Section 7.5 and based on the 

results obtained for the K-nearest Neighbours regression model, a value of the determination 

coefficient has been defined above which the implementation of an operational prediction 

system can be recommended, which corresponds to the values of R² that are above 0.8. Taking 

this criterion into account, Table 7.7 was prepared, which presents the sector indices by group 
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that meet the described condition and therefore have a good assessment to recommend the 

implementation of said system. 

 

SECTORAL INDEX 

GROUPS 

ATMOSPHERIC 

INDEX 

SECTORAL 

INDEX 
R² 

Snow ea hsd 1.00 

Snow wp hsd 1.00 

Snow epnp hsd 1.00 

Snow pna hsd 1.00 

Snow eawr hsd 1.00 

Snow scan hsd 1.00 

Snow poleur hsd 1.00 

Snow nino34 hsd 1.00 

Snow oni hsd 1.00 

Aridity continentality ea uai 1.00 

Fire ea kbdi 1.00 

Bioclimatic scan bio20 0.83 

Bioclimatic wp bio20 0.83 

Bioclimatic eawr bio20 0.83 

Bioclimatic pna bio20 0.83 

Bioclimatic ea bio20 0.83 

Bioclimatic poleur bio20 0.83 

Bioclimatic nino34 bio20 0.83 

Bioclimatic oni bio20 0.83 

Bioclimatic epnp bio20 0.82 

Table 7.7. Recommended sector indices for the implementation of a system for the K-nearest 

Neighbours regression method taking into account the previous 2 months. 



 

 82 Work Package 5 / Deliverable 5.3   

2 

Results of the Linear Regression Model 

The Linear Regression statistical model, was built using atmospheric indices as predictors and 

sector indices as predictands. The model was reproduced for three different time lags of the 

series of predictands over the series of predictors, corresponding to 1, 2 and 3 months. The 

cities of Europe selected to carry out the regression correspond to 378, which are represented 

in Figure .  

According to the description in sub-section 7.5. and to evaluate the predictive capacity of the 

Linear Regression model, the determination coefficients (R²), the Pearson correlation 

coefficients (R) and the mean square error were calculated (R). Taking into account the values 

obtained and to explain the results more precisely, the determination coefficient (R²) was taken 

as representative. Subsequently, the R² values were represented by graphs with colour scales, 

to observe which of the sectoral indices responded better to the predictive capabilities of the 

model, having atmospheric indices as predictors. The results obtained are presented in Figure  

for the model built with one month as the selected time offset, in Figure  7.14 with two months 

and in Figure  with three months. 

 

Figure 7.13. Analysis of the coefficient for the Linear Regression method taking into account the 

previous 1 months. 

 

Figure 7.14. Analysis of the coefficient for the Linear Regression method taking into account the 

previous 2 months. 
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Figure 7.15. Analysis of the coefficient for the Linear Regression method taking into account the 

previous 3 months. 

Prior to the analysis, it is important to mention that a warmer colour, with tendencies to red 

colour, indicates a coefficient of determination closer to 1, while a colder colour, with tendencies 

to blue, indicates a coefficient of determination closer to 0.  

In this model, R² values close to 1 are not observed, since the figures constructed for each lag 

time present a colour scale with a blue gradient, indicating that the coefficients of determination 

vary in a range of 0.0 to 0.4, respectively. The values obtained for the Niño atmospheric index 

are highlighted, which reaches values of up to 0.4. 

Results of the Seasonal Autoregressive Integrated Moving Average with Exogenous 

Regressors Model (SARIMAX) 

The SARIMAX statistical model, was built using atmospheric indices as predictors and sector 

indices as predictands. The model was reproduced for three different time lags of the series of 

predictands over the series of predictors, corresponding to 1, 2 and 3 months. The cities of 

Europe selected to carry out the regression correspond unlike the other methods applied only to 

3, due to the computational capacity demanded by the model. The described cities are 

represented in Figure.  

According to the description in section 7.5 and to evaluate the predictive capacity of the 

SARIMAX model, the determination coefficients (R²), the Pearson correlation coefficients (R) 

and the mean square error were calculated (R). Taking into account the values obtained and to 

explain the results more precisely, the determination coefficient (R²) was taken as 

representative. Subsequently, the R² values were represented by graphs with colour scales, to 

observe which of the sectoral indices responded better to the predictive capabilities of the 

model, having atmospheric indices as predictors.  

The results obtained are presented in Figure  for the model built with one month as the selected 

time offset, in Figure 7.17 with two months and in Figure 7.18 con with three months, 

respectively. 
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Figure 7.16. Analysis of the coefficient for the SARIMAX method taking into account the 

previous 1 months. 

 

Figure 7.17. Analysis of the coefficient for the SARIMAX method taking into account the 

previous 2 months. 

 

Figure 7.18. Analysis of the coefficient for the SARIMAX method taking into account the 

previous 3 months. 

In Figure , you can see that the colours vary depending on the lag time used. The largest 

number of squares in a warm tone with more red tendencies, are presented in the model made 

after a delay time of 2 months. This phenomenon is accentuated a little more in the indexes of 

the groups corresponding to temperature, tourism, bioclimatic and snow that were presented in 
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Table 7.5. This indicates that the simulations with greater time lag obtained determination 

coefficients with values closer to 1, which can be translated as a better predictive capacity of the 

model. 

Regarding the predictive behaviour of atmospheric indices over sectoral indices, there are 

important differences in the results, especially those predicted by the epnp atmospheric index. 

An example of this can be seen in Figure 7.19, column 8 (precipitation group index ep), where 

the colour scale obtained shows variations just in the atmospheric index epnp, indicating that 

the coefficient of determination changes, with respect to the other indices calculated. 

Taking into account that the best determination coefficients were obtained from the model built 

with a lag time of 2 months, a boxplot was prepared in order to observe the behaviour of the 

indices by group, the results are presented in the Figure . 

  

Figure 7.19. Boxplot for Analysis of the coefficient for SARIMAX regression method. 

In Figure  different coloured points can be visualized, which represent the results of the 

coefficient of determination for each of the groups. The determination coefficients calculated for 

the sectoral indices of the Precipitation group are also contained, which vary between 0.0 and 

0.82, presenting a homogeneous distribution around the median that corresponds to 0.34. You 

can also see groups that have a behaviour similar to that of precipitation, such as Wind and 

Drought, where more than 95% of their R² values are below 0.34. 

For the indices corresponding to the temperature group, 50% of the R² results oscillate in the 

range of 0.81 and 1.00 with a grouped distribution, while the other 50% oscillate in the range of 

0.81 to 0.0 with a distribution more dispersed. The groups corresponding to Cloud Radiation, 

Snow, Aridity and Fire have ranges of variation with less amplitude than the group of 

temperature and all have a median below 0.85. 

The Bioclimatic and Tourism groups stand out, which have a median above 0.9, which indicates 

that at least 50% of the data had coefficients of determination above this value. In the case of 
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tourism, since there is only one index for each atmospheric group, there is no dispersion in the 

results. Finally, and as in Figure 7.19, an atypical behaviour is observed in the determination 

coefficients calculated from the atmospheric index epnp, in relation to the others. 

7.6.1 Suggestions for implementation of an operational forecasting system for the K-

nearest Neighbours regression model 

Taking into account the methodological description described in sub-section 7.5 and based on 

the results obtained for the SARIMAX, a value of the determination coefficient has been defined 

above which the implementation of an operational prediction system can be recommended, 

which corresponds to the values of R² that are above 0.8. Taking this criterion into account, 

Table 7.8 was prepared, which presents the sector indices by group that meet the described 

condition and therefore have a good assessment to recommend the implementation of said 

system. 

SECTORAL 

INDEX GROUPS 
ATMOSPHERIC INDEX SECTORAL INDEX R² 

Precipitation 
oni, scan, pna, nino34, 

ea, poleur, wp, eawr. 
ep 0.845-0.823 

Temperature 
oni, scan, pna, nino34, 

ea, poleur, wp, eawr. 

gd4, gnt gtg, gtx hd17, dd17 ntg, hi, 

wci, at, txx, xtg, txn, su, csd, dtr, fd, 

stx32, zcd, d32, cfd. 

0.987-0.804 

Cloud radiation 
oni, scan, pna, nino34, 

ea, poleur, wp, eawr. 
ssd,ssp, fod, aci 0.953-0.803 

Snow 
oni, scan, pna, nino34, 

ea, poleur, wp, eawr. 
scd 0.943-0.931 

Bioclimatic 
oni, scan, pna, nino34, 

ea, poleur, wp, eawr. 
Bio20, hi, wci, at,  

0.992- 

0.984 

Aridity 

continentality 

oni, scan, pna, nino34, 

ea, poleur, wp, eawr. 
eto, cmd 0.981-0.873 

Fire 
oni, scan, pna, nino34, 

ea, poleur, wp, eawr. 
Fffi, fwi 

0.869–

0.827 

Tourism 
oni, scan, pna, nino34, 

ea, poleur, wp, eawr. 
utci 0.977-0.975 

Table 7.8. Recommended sector indices for the implementation of a system for the SARIMAX 

regression method taking into account the previous 2 months. 
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7.7  CONCLUSIONS 

Statistical models were constructed for three time lags, corresponding to 1, 2 and 3 months. To 

evaluate the predictive capacity of the models, the coefficient of determination (R²), the 

Pearson's correlation coefficient (R) and the mean square error were calculated. In accordance 

with the obtained values and in order to explain the results more precisely, the determination 

coefficient (R²) was taken as representative. With the coefficients obtained and for each one of 

the models, a graph with a colour scale was constructed to determine which of the models gave 

better results. Once these graphs were analyzed, the lag time with the best predictive capacity 

was selected for each model, and a boxplot was constructed from it to evaluate the results by 

groups. Through the procedure described, the following conclusions were reached: 

• The Random Forest model built from 1 month of time lag, was the one that obtained 

lower coefficients of determination, compared to the 2 and 3 month models, therefore it 

is concluded that it has a lower predictive capacity. Subsequently, the elaborated model 

is located with a time lag of 3 months, which gave R² values slightly lower than those 

calculated with the model constructed with 2 months. Finally, the model with the best 

predictive capacity corresponds to the one developed with a time lag of 2 months. 

• The Random Forest model elaborated with 2 months of time lag, obtained determination 

coefficients below 0.3 for the indices contained within the Precipitation, Wind, Drought 

and Fire groups, which translates as low predictive capacity. For the groups 

Temperature, Cloud Radiation, Snow and Aridity Continentality, R² values were found 

with a lot of variability, which in relation to the groups described at the beginning 

obtained average values of 0.5, with which it can be concluded that for these groups the 

model had an intermediate predictive capacity. Finally, there are the Tourism and 

Bioclimatic groups where more than 90% of the data obtained coefficients of 

determination above 0.7, which indicates that the model explains the results well and 

therefore its predictive capacity is good. 

• The K-nearest Neighbours model built from 1 month of time lag, was the one that 

obtained lower coefficients of determination, compared to the 2 and 3 month models, 

therefore it is concluded that it has a lower predictive capacity. Subsequently, the 

elaborated model is located with a time lag of 3 months, which gave R² values slightly 

lower than those calculated with the model constructed with 2 months. Finally, the model 

with the best predictive capacity corresponds to the one developed with a time lag of 2 

months. 

• The K-nearest Neighbours model elaborated with 2 months of time lag, obtained 

determination coefficients below 0.25 for the indices contained within the Precipitation, 

Wind, Drought and Fire groups, which translates as low predictive capacity. For the 

groups Temperature, Cloud Radiation, Snow and Aridity Continentality, R² values were 

found with a lot of variability, which in relation to the groups described at the beginning 

obtained average values of 0.4, with which it can be concluded that for these groups the 

model had a low predictive capacity. Finally, there are the Tourism and Bioclimatic 

groups where more than 90% of the data obtained coefficients of determination above 
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0.6, which indicates that the model explains the results well and therefore its predictive 

capacity is good. 

• The Linear Regression model did not show satisfactory results, since the values 

obtained in the determination coefficients for the three models constructed from the 

different lag times presented values close to 0, highlighting those obtained from the 

Niño34 atmospheric index, the which reached values of up to 0.4. For this reason, it is 

concluded that the predictive capacity of the model is low, almost null for this model. 

• The SARIMAX model built from 1-month time lag presented a lower number of 

determination coefficients with values close to 1, compared to the model developed for 

2-month time lags. The model built from 3 months of lag, presented a behaviour similar 

to that of 1 month. In conclusion, the model that best explains the results and that 

therefore yielded a greater number of determination coefficients with values close to 1, 

corresponded to the model developed for a delay time of 2 months. 

• The SARIMAX model elaborated with 2 months of time lag, obtained determination 

coefficients below 0.35 for the indices contained within the Precipitation, Wind and 

Drought, which translates as low predictive capacity. For the groups Temperature, Cloud 

Radiation, Snow and Aridity Continentality, R² values were found with a lot of variability, 

which in relation to the groups described at the beginning obtained average values of 

0.85, with which it can be concluded that for these groups the model had a good 

predictive capacity. Finally, there are the Tourism and Bioclimatic groups where more 

than 90% of the data obtained coefficients of determination above 0.9, which indicates 

that the model explains the results very well and therefore its predictive capacity is very 

good. 

• There is a pattern that is repeated in all the models built and is related to the small 

difference that can be observed between the determination coefficients (R²) calculated 

from the relationship of any sector index, with respect to each atmospheric index, which 

in most cases they have a variation percentage of less than 1%. An example of this 

pattern can be seen in the R² results corresponding to the utci tourism index obtained for 

a lag time of 2 months (last column of Figure , Figure  and Figure ), where the colour 

gradient it remains almost constant, which indicates a minimal variation in the 

determination coefficients.  

• Making a joint evaluation of the models that gave the best results, built with a lag time of 

2 months, it can be concluded that SARIMAX is located first, which had the best 

predictive capacity, presenting very good determination coefficients for the groups 

evaluated. Secondly, the Random Forest model, which has a much lower predictive 

quality in relation to SARIMAX, is located for each of the groups evaluated. In third place 

is the K-nearest Neighbours model, which presented slightly lower R² results, but without 

significant differences compared to the Random Forest model. Finally, there is the 

Linear Regression model, which in general did not present satisfactory results for the 

analysis. 
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8. CONCLUSIONS 

Some key results associated with D5.3 are listed below: 

1) The teleconnection indices which present the largest influence over climate indices in 

Europe are North Atlantic Oscillation (NAO), East Atlantic pattern (EA), Scandinavian 

pattern (SCA) and the East Atlantic/West Russia pattern (EA/WR), with a seasonal- and 

region-dependent effect. The largest observed trends concerning teleconnection indices 

correspond to NAO (especially winter NAO) and EA, which are closely related to 

precipitation-derived indices and cold extremes in most continental Europe, and more 

locally associated with temperature-derived (hot extremes) indices in the Mediterranean 

basin. Details are discussed in Section 2. 

2) Six regions have been identified where interannual variability of growing season onset is 

sensitive to one or both of the winter NAO and EA. The strongest NAO signal is found 

around the English Channel and the EA signal is strong across much of continental 

Europe (particularly for Italy, Hungary and the Balkans). The positive phases of each 

teleconnection are associated with earlier growing season onsets with the influence of 

the NAO mostly confined to Western Europe. Five of six regions considered have trends 

towards an earlier growing season onset greater than 2 days/decade with only the 

Balkans showing a weak and non-statistically significant trend. The trend in the JFM 

NAO component dominates the GBI trend and the EA trends are more important for the 

five continental regions. Further details are outlined in Section 6. 

3) Atmospheric Blocks tend to be the main driver for extremely cold winter events 

throughout most of Europe, while ridges relate to well above average temperature 

conditions and mild winters. During summer, both patterns related to warm events but in 

Mediterranean areas, ridges are the pattern responsible for extreme heat events; 

Rainfall in Southern Europe is strongly affected by these patterns, as strong ridges lead 

to extremely dry conditions, with almost complete absence of rainfall for prolonged 

periods. While blocks tend to cause drier conditions in Central/Northern Europe, they are 

associated with increased instability and increased frequency of extreme precipitation 

events in Southern Europe. More details are in Section 4. 

4) Correlation between four primary teleconnection indices (NAO, EA/WR, SCA and EA) 

and the hub height wind speeds, Capacity Factor (CF) and Wind Power Density (WPD) 

in northern Europe. Tall tower series confirm the correlation patterns depicted by the 

ERA5-derived parameters of interest. Positive phases of NAO and EA/WR increase 

winds, CF and WPD in northern Europe, and so does the wind power production. 

Conversely, SCA and EA reduce the wind power production in the previously mentioned 

regions, so we can expect less production. Accurate seasonal forecasts of the 

atmospheirc indices will allow anticipating periods of higher-than-normal or below-than-

normal wind energy production, and thus, scheduling activities accordingly. For more 

details, see Section 3 and D6.3. 



 

 90 Work Package 5 / Deliverable 5.3   

2 

5) Based on a case study focusing on southern Italy, it is found that links between impacts 

and teleconnection patterns are not stationary over time. From 1951-1980 to 1981-2010 

there is a clear change in the correlation between the various teleconnection indices and 

the regional precipitation values (e.g. the impact of the Mediterranean Oscillation on the 

East coast precipitation). Details are outlined in Section 5. 

6) Statistical and physically-based models have been developed (Sections 2-6) with a 

particular advance in the prediction of sectoral indices from atmospheric indices through 

the implementation of lagged statistical models. The SARIMAX model is found to 

produce the best predictive capacity, with the Random Forest and K-nearest Neighbours 

models also performing skilfully while the Linear model is found to be deficient. 

Recommendations are made to build an operational prediction system for indices that 

performed well as described in detail in Section 7. 
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